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Bayesian State Estimation

Problem Definition

Consider the state-space system

xk+1 =f(xk) + wk

yk =h(xk) + vk

where

xk ∈ Rnx is the state with the initial state x0 ∼ p(x0);

yk ∈ Rny is the measurement;

wk ∈ Rnx is the white process noise with a known distribution
p(w) independent from xk;

vk ∈ Rny is the white measurement noise with a known
distribution p(v) independent from xk.

Aim: Find the posterior density of the state p(xk|y1:k) where

y1:k , {y1, y1, . . . , yk}.
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Bayesian State Estimation

The process noise represents our lack of knowledge about the
system dynamics. The larger the process noise, the smaller
will be our trust on the state equation.

The measurement noise represents the imperfections in
acquiring the data. The larger the measurement noise, the
smaller will be our trust on the measurements.

Bayesian state estimation, except for few special cases, boils
down to an infinite dimensional estimation problem, i.e., a
function (p(xk|y1:k)) has to be computed.

Basic probability theory gives a recursive solution in the form

p(xk−1|y1:k−1)
prediction−→ p(xk|y1:k−1)

update−→ p(xk|y1:k)
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Solution: Bayesian Density Recursion

Bayesian Recursion

Start with p(x0), set k = 1.

For each k

Prediction Update

p(xk|y1:k−1) =

∫
p(xk|xk−1)p(xk−1|y1:k−1) dxk−1

Measurement Update

p(xk|y1:k) =
p(yk|xk)p(xk|y1:k−1)

p(yk|y1:k−1)

where

p(yk|y1:k−1) =

∫
p(yk|xk)p(xk|y1:k−1) dxk

is constant with respect to xk.
k = k + 1.
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Solution: Bayesian Density Recursion

Terminology

p(xk|y1:k−1): Predicted state density

p(yk|y1:k−1): Predicted measurement density

p(xk|y1:k): Estimated state density/ posterior state density

p(yk|xk): Measurement likelihood

p(xk|xk−1): State transition density
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Point Estimates

MMSE criterion

Define the estimates as

x̂MMSE
k|k−1 = arg min

x̂k
E
[
‖xk − x̂k‖22|y1:k−1

]
x̂MMSE
k|k = arg min

x̂k
E
[
‖xk − x̂k‖22|y1:k

]
which minimize the mean square (estimation or prediction)
error.

The estimates are given as

x̂MMSE
k|k−1 =E [xk|y1:k−1]

x̂MMSE
k|k =E [xk|y1:k]

which are the means for the predicted and estimated state
densities.
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Point Estimates

MMSE is the most common criterion to obtain point
estimates.

The second common point estimate is called maximum a
posteriori (MAP) estimate.

MAP criterion

The estimates are given as

x̂MAP
k|k−1 = arg max

xk
p(xk|y1:k−1)

x̂MAP
k|k = arg max

xk
p(xk|y1:k)

which are the global maxima for the predicted and estimated state
densities.
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Point Estimates

Uncertainty Measures

Every point estimate must be accompanied by an uncertainty
measure describing how trustable it is.

The most common uncertainty measure is the covariance.

Pk|k−1 =E
[
(xk − x̂k|k−1)(xk − x̂k|k−1)T|y1:k−1

]
Pk|k =E

[
(xk − x̂k|k)(xk − x̂k|k)T|y1:k

]
which are the covariances of the prediction x̂k|k−1 and the estimate
x̂k|k.
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Most Important Special Case

Original Problem

xk+1 =f(xk) + wk

yk =h(xk) + vk

with wk ∼ p(wk), vk ∼ p(vk) and x0 ∼ p(x0).

Special Case: Linear Gaussian Systems

f(xk) = Axk where A ∈ Rnx×nx ;

g(xk) = Cxk where C ∈ Rny×nx ;

wk ∼ N (wk; 0, Q) where Q ≥ 0 ∈ Rnx×nx ;

vk ∼ N (vk; 0, R) where R > 0 ∈ Rny×ny ;

x0 ∼ N (x0; x̂0|0, P0|0).
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Linear Gaussian Systems

Special Problem

xk+1 =Axk + wk

yk =Cxk + vk

with wk ∼ N (wk; 0, Q), vk ∼ N (vk; 0, R) and
x0 ∼ N (x0; x̂0|0, P0|0).

In this case it can be shown that all densities are Gaussian:

p(xk|y1:k−1) = N (xk; x̂k|k−1, Pk|k−1)

p(yk|y1:k−1) = N (yk; ŷk|k−1, Sk|k−1)

p(xk|y1:k) = N (xk; x̂k|k, Pk|k)

p(yk|xk) = N (yk;Cxk, R)

p(xk|xk−1) = N (xk;Axk−1, Q)
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Linear Gaussian Systems

Since the density p(xk|y1:k) is always Gaussian, it is possible
to keep only its sufficient statistics x̂k|k and Pk|k

In other words, instead of propagating densities as

p(xk−1|y1:k−1)
prediction−→ p(xk|y1:k−1)

update−→ p(xk|y1:k)

we propagate only the means and the covariances as

x̂k−1|k−1, Pk−1|k−1
prediction−→ x̂k|k−1, Pk|k−1

update−→ x̂k|k, Pk|k.

As a result, the infinite dimensional estimation problem
reduces to a finite dimensional estimation problem.
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Kalman Filter

The equations of propagation for the means and the covariances
are called Kalman filter.

Kalman Filter

Start with x̂0|0, P0|0, set k = 1.

For each k:

Prediction Update

x̂k|k−1 =Ax̂k−1|k−1

Pk|k−1 =APk−1|k−1A
T +Q

Measurement Update

x̂k|k =x̂k|k−1 +Kk(yk − ŷk|k−1)

Pk|k =Pk|k−1 −KkSk|k−1K
T
k

where
ŷk|k−1 =Cx̂k|k−1

Sk|k−1 =CPk|k−1C
T +R

Kk =Pk|k−1C
TS−1k|k−1
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Kalman Filter

Terminology

x̂k|k−1: Predicted state

Pk|k−1: Covariance of the predicted state

x̂k|k: Estimated state

Pk|k: Covariance of the estimated state

ŷk|k−1: Predicted measurement

νk , yk − ŷk|k−1: Measurement prediction error / innovation

Sk|k−1: Covariance of the predicted measurements /
innovation covariance

Kk: Kalman gain
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Nonlinear Non-Gaussian Systems

Original Problem

xk+1 =f(xk) + wk

yk =h(xk) + vk

with wk ∼ p(wk), vk ∼ p(vk) and x0 ∼ p(x0).

In general assuming that the functions f(·) and g(·) are linear
is far too restrictive.

Similarly the noise terms cannot be assumed to be Gaussian in
many cases.

The exact posterior density p(xk|y1:k) is no longer Gaussian
for the general case.
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Nonlinear Non-Gaussian Systems

We are going to consider two main type of solutions to the
Bayesian state estimation problem for nonlinear non-Gaussian
systems.

The posterior p(xk|y1:k) can be approximated in two different
ways:

p(xk|y1:k) ≈N (xk; x̂k|k, Pk|k) Gaussian Approximation

p(xk|y1:k) ≈
N∑
i=1

π
(i)
k|kδx(i)

k|k
(xk) Particle Approximation

where π
(i)
k|k ≥ 0 and

∑N
i=1 π

(i)
k|k = 1.
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Nonlinear Transformations of Gaussian Random Variables

Main Task

Consider a random vector φ ∼ N (φ; φ̄,Φ). Let ψ be another
random vector related to φ as

ψ = g(φ)

where g(·) is a nonlinear function. Suppose that we would like to
approximate the density p(ψ) of ψ as a Gaussian as follows.

p(ψ) ≈ N (ψ; ψ̄,Ψ).

Find ψ̄ and Ψ.
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Linearization

The first and the most basic solution to this problem is
linearization.

Let us linearize g(φ) around the mean φ̄.

g(φ) ≈ g(φ̄) +G(φ− φ̄)

where

G =
∂g

∂φ

∣∣∣∣
φ=φ̄

=


∂g1
∂φ1

∣∣∣
φ=φ̄

· · · ∂g1
∂φnφ

∣∣∣
φ=φ̄

...
. . .

...
∂gnψ
∂φ1

∣∣∣
φ=φ̄

· · ·
∂gnψ
∂φnφ

∣∣∣
φ=φ̄


is the Jacobian.
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Linearization

Results from Linearization

The following simple mean and covariance are obtained for
p(ψ) ≈ N (ψ; ψ̄,Ψ):

ψ̄ =g(φ̄)

Ψ =GΦGT

With the linearization, the transformed mean is obtained by
directly transforming the original mean.

The covariance is obtained as in the linear transformation,
where the transformation matrix is the Jacobian matrix of the
nonlinear transformation.
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Linearization Illustration

Example

Let φ ∼ N (φ, 2,Φ) and g(φ) = φ2.

Change the standard deviation
√

Φ = 0.1, 0.2, . . . , 1.

Observe the exact density p(ψ) along with the approximation
N (ψ; ψ̄,Ψ) obtained from linearization.
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Linearization Illustration
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Linearization Illustration
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Linearization Illustration

0 5 10
0

10

20

30

40

50

60

70

80

φ

φ̄ =2
√
Φ =0.3

 

 

0 5 10
0

0.2

0.4

0.6

0.8

1

ψ

exact ψ̄ =4.09 linearized ψ̄ =4

 

 
10 × p(φ)
g(φ)

p(ψ)
Linearization

21 / 41

Linearization Illustration
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Linearization Illustration
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Linearization Illustration
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Linearization Illustration
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Linearization Illustration
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Linearization Illustration
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Linearization Illustration
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Linearization

If the uncertainty is small in the variable to be transformed,
the linearization gives good results.

As the uncertainty grows, the performance of linearization
degrades sometimes leading to terrible results.

Linearization cares only about the information of
transformation around the linearization point, hence it only
works good locally. When the uncertainty grows, local results
are bound to be bad.
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Unscented Transform

The second method of nonlinear transformation we are going
to consider is the unscented transform.

Unscented transform is based on using a number of
points/particles (called as sigma-points) to represent the
original Gaussian density N (φ; φ̄,Φ).

The sigma-points are
transformed with the
nonlinear
transformation g(φ).

The mean and
covariance of the
transformed
sigma-points give ψ̄
and Ψ respectively.

The figure is taken from S.J. Julier, J.K. Uhlmann, “Unscented filtering and
nonlinear estimation,” Proceedings of the IEEE, vol.92, no.3, pp. 401–422, Mar.

2004.
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Unscented Transform

Finding the Sigma-Points

We set the sigma-points and their weights for φ ∼ N (φ, φ̄,Φ) as

φ(0) =φ̄ π(0) =π(0)

φ(i) =φ̄+

[√
nφ

1− π(0)
Φ

]
:,i

π(i) =
1− π(0)

2nφ

φ(i+nφ) =φ̄−
[√

nφ

1− π(0)
Φ

]
:,i

π(i+nφ) =
1− π(0)

2nφ

for i = 1, . . . , nφ.

Note that there are 2nφ + 1 sigma-points.√
· denotes the p.s.d. square-root of the matrix argument.

sqrtm(·) or cholcov(·) in Matlab.
[·]:,i denotes the ith column of the matrix argument.

Note that we have
∑2nφ

i=0 π
(i) = 1 and

2nφ∑
i=0

π(i)φ(i) = φ̄

2nφ∑
i=0

π(i)(φ(i) − φ̄)(φ(i) − φ̄)T = Φ
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Unscented Transform
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Unscented Transform

Unscented Transform

Find the sigma-points and their weights
{
π(i), φ(i)

}2nφ
i=0

.

Transform the sigma-points with the transformation g(φ) as

ψ(i) = g
(
φ(i)
)

for i = 0, . . . , 2nφ.

Find the transformed mean and covariance as

ψ̄ =

2nφ∑
i=0

π(i)ψ(i) Ψ =

2nφ∑
i=0

π(i)(ψ(i) − ψ̄)(ψ(i) − ψ̄)T
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Unscented Transform Illustration
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Unscented Transform Illustration
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Unscented Transform Illustration
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Unscented Transform Illustration
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Unscented Transform Illustration
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Unscented Transform Illustration
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Unscented Transform Illustration
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Unscented Transform Illustration
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Unscented Transform Illustration
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Unscented Transform Illustration
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Back to Nonlinear and Non-Gaussian Bayesian State
Estimation

Bayesian State Estimation

xk+1 =f(xk) + wk

yk =h(xk) + vk

with wk ∼ p(wk), vk ∼ p(vk) and x0 ∼ p(x0).

We can obtain a solution for the nonlinear non-Gaussian
Bayesian state estimation problem using both linearization
and unscented transform.

These solutions are called extended Kalman filter (EKF) and
unscented Kalman filter (UKF).

For both approaches, we have to assume

p(wk) ≈N (wk; 0, Q) p(x0) ≈ N (x0; x̂0|0, P0|0)

p(vk) ≈N (vk; 0, R)
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Extended Kalman Filtering

Extended Kalman Filter

Start with x̂0|0, P0|0, set k = 1.

For each k

Prediction Update

x̂k|k−1 =f(x̂k−1|k−1)

Pk|k−1 =FPk−1|k−1F
T +Q

where F = ∂f
∂xk−1

|xk−1=x̂k−1|k−1
.

Measurement Update

x̂k|k =x̂k|k−1 +Kk(yk − ŷk|k−1)

Pk|k =Pk|k−1 −KkSk|k−1K
T
k

where
ŷk|k−1 =h(x̂k|k−1) Sk|k−1 = HPk|k−1H

T +R

Kk =Pk|k−1H
TS−1k|k−1

with H = ∂h
∂xk
|xk=x̂k|k−1

.
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Unscented Kalman Filtering

Unscented Kalman Filter

Start with x̂0|0, P0|0, set k = 1.

For each k
Prediction Update

Generate sigma-points and their weights {π(i), x
(i)

k−1|k−1}
2nx
i=0

for N (xk−1; x̂k−1|k−1, Pk−1|k−1).
Transform the sigma-points.

x
(i)

k|k−1 = f
(
x
(i)

k−1|k−1

)
for i = 0, . . . 2nx

Obtain the predicted state estimate x̂k|k−1 and its covariance
Pk|k−1 as

x̂k|k−1 =

2nx∑
i=0

π(i)x
(i)

k|k−1

Pk|k−1 =

2nx∑
i=0

π(i)
(
x
(i)

k|k−1 − x̂k|k−1

)(
x
(i)

k|k−1 − x̂k|k−1

)T
+Q
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Unscented Kalman Filtering
Unscented Kalman Filter

Measurement Update

Generate sigma-points and their weights {π(i), x
(i)

k|k−1}
2nx
i=0 for

N (xk; x̂k|k−1, Pk|k−1).

Transform the sigma-points {π(i), x
(i)

k|k−1}
2nx
i=0

y
(i)

k|k−1 = h
(
x
(i)

k|k−1

)
for i = 0, . . . 2nx

Obtain the state estimate x̂k|k and its covariance Pk|k as

x̂k|k =x̂k|k−1 +Kk(yk − ŷk|k−1)

Pk|k =Pk|k−1 −KkSk|k−1K
T
k

where

ŷk|k−1 =

2nx∑
i=0

π(i)y
(i)

k|k−1 Kk = ΣxyS
−1
k|k−1

Sk|k−1 =

2nx∑
i=0

π(i)
(
y
(i)

k|k−1 − ŷk|k−1

)(
y
(i)

k|k−1 − ŷk|k−1

)T
+R

Σxy =

2nx∑
i=0

π(i)
(
x
(i)

k|k−1 − x̂k|k−1

)(
y
(i)

k|k−1 − ŷk|k−1

)T
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What is more?

Extended and unscented Kalman filters are used extensively all
over the world in many real applications.

They are very useful when

Nonlinearities are mild.
Posterior densities are unimodal.
Uncertainties are small (i.e., SNR is high).

When one or more of these conditions do not hold, they can

Simply give bad results.
Totally diverge.

A more powerful framework that can be useful for such
situations is particle filters.
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Monte Carlo Methods

The main idea is to approximate the posterior p(xk|y1:k) as

p(xk|y1:k) ≈
N∑
i=1

π
(i)
k|kδx(i)

k|k
(xk)

where some state values {x(i)
k|k}

N
i=1 called particles and weights

{π(i)
k|k}

N
i=1 are used.

With Monte Carlo methods, taking any complicated integral
simplifies to∫

g(xk)p(xk|y1:k) dxk ≈
N∑
i=1

π
(i)
k|kg

(
x

(i)
k|k

)
.
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Example: Representation with Particles

p(x) = 0.7N (x;−3, 1) + 0.3N (x; 3, 1) with 200 particles.
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Example: Representation with Particles

In general, both the
weights and the
proximity of the
particles carry
information.

If the weight of a
particle is high, one
cannot directly
conclude that density
value is high there if
the particle is in
isolation. −10 −5 0 5 10

0

0.05

0.1

0.15

0.2
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0.3

0.35

x
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Particle Filter

Instead of propagating densities as

p(xk−1|y1:k−1)
prediction−→ p(xk|y1:k−1)

update−→ p(xk|y1:k)

a particle filter propagates only the particles and the weights

{π(i)
k−1|k−1, x

(i)
k−1|k−1}

N
i=1

prediction−→ {π(i)
k|k−1, x

(i)
k|k−1}

N
i=1

update−→ {π(i)
k|k, x

(i)
k|k}

N
i=1.

according to Bayesian density recursion.

In some sense, a particle filter is a generalization of unscented
Kalman filter to random particles instead of sigma-points.
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Particle Filtering

Particle Filter

Start with x
(i)
0|0 ∼ p(x0), π

(i)
0|0 = 1/N for i = 1, . . . , N , set

k = 1.

For each k
Prediction Update

Sample process noise w
(i)
k−1 ∼ p(wk−1).

Set the predicted particles and weights as

x
(i)

k|k−1 =f
(
x
(i)

k−1|k−1

)
+ w

(i)
k−1 π

(i)

k|k−1 = π
(i)

k−1|k−1

for i = 1, . . . , N .
Obtain the predicted state estimate x̂k|k−1 and its covariance
Pk|k−1 as

x̂k|k−1 =

N∑
i=1

π
(i)

k|k−1x
(i)

k|k−1

Pk|k−1 =

N∑
i=1

π
(i)

k|k−1

(
x
(i)

k|k−1 − x̂k|k−1

)(
x
(i)

k|k−1 − x̂k|k−1

)T
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Particle Filtering

Particle Filter

Measurement Update

Set the estimated particles and weights as

x
(i)

k|k =x
(i)

k|k−1

π
(i)

k|k =
π̃
(i)

k|k∑N
i=1 π̃

(i)

k|k

for i = 1, . . . , N where

π̃
(i)

k|k =π
(i)

k|k−1p
(
yk

∣∣∣x(i)k|k )
Obtain the state estimate x̂k|k and its covariance Pk|k as

x̂k|k =

N∑
i=1

π
(i)

k|kx
(i)

k|k

Pk|k =

N∑
i=1

π
(i)

k|k

(
x
(i)

k|k − x̂k|k
)(

x
(i)

k|k − x̂k|k
)T
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Particle Filtering

Particle Filter

Resampling

A particle filter is useless
without this step.
Without this step, all
weights go to zero except
one of them which
becomes one.
This step removes the
particles with negligible
weights and replicates the
particles with high
weights.
Particle weights become
all equal at the end of
resampling.

Figure taken from P.M. Djuric, J.H. Kotecha, J. Zhang; Y.
Huang; T. Ghirmai, M.F. Bugallo, J. Miguez, “Particle
filtering,” IEEE Signal Processing Magazine, vol.20, no.5, pp.
19–38, Sep. 2003.
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Particle Filtering: Resampling

Figure taken from P.M. Djuric, J.H. Kotecha, J. Zhang; Y. Huang; T. Ghirmai, M.F. Bugallo, J. Miguez, “Particle
filtering,” IEEE Signal Processing Magazine, vol.20, no.5, pp. 19–38, Sep. 2003.
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