First name:

Last name: \qquad

Student ID: \qquad

Section:

Signature: \qquad

Read before you start:

- There are four questions.
- The examination is closed-book.
- No calculator is allowed.
- The duration of the examination is 110 minutes.

Q1	Q2	Q3	Q4	Total

Q1.
For the below 5×5 matrix

$$
A=\left[\begin{array}{rrrrr}
1 & 0 & 0 & 0 & -1 \\
0 & 1 & 0 & 0 & 1 \\
0 & -1 & 1 & 0 & 0 \\
0 & 0 & 0 & 2 & 0 \\
0 & 0 & 0 & 0 & 2
\end{array}\right]
$$

it is known that $\mathbb{C}^{5}=\mathcal{N}\left([A-I]^{2}\right) \oplus \mathcal{N}([A-2 I])$ where I is the identity matrix of appropriate size. The aim is to find a transformation matrix P such that $\bar{A}=P^{-1} A P$ is block diagonal of the form

$$
\bar{A}=\left[\begin{array}{cc}
\bar{A}_{1} & 0 \\
0 & \bar{A}_{2}
\end{array}\right]
$$

where the first block \bar{A}_{1} is associated with the subspace $\mathcal{N}\left([A-I]^{2}\right)$ and the second block \bar{A}_{2} with the subspace $\mathcal{N}([A-2 I])$.
(a) Find the sizes of \bar{A}_{1} and \bar{A}_{2}. (Explain your reasoning.)
(b) Find a transformation matrix P.
(c) Compute \bar{A}_{2}.

Answer:

Q2.
Consider the equation

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=b
$$

Find the solution (or its best approximation) for each of the below cases.
(a) $b=\left[\begin{array}{lll}5 & -1 & 5\end{array}\right]^{T}$.
(b) $b=\left[\begin{array}{lll}5 & 0 & -5\end{array}\right]^{T}$.

Answer:

Q3.
A linear transformation $T: \mathbb{C}^{3} \rightarrow \mathbb{C}^{3}$ is known to satisfy

$$
T\left(\left[\begin{array}{l}
\alpha \\
\beta \\
\gamma
\end{array}\right]\right)=\left[\begin{array}{c}
\alpha+2 \beta \\
\beta+3 \gamma \\
-\gamma
\end{array}\right] \quad \text { for all } \alpha, \beta, \gamma \in \mathbb{C}
$$

(a) Find the matrix representation A of transformation T.
(b) Compute the characteristic polynomial $d(s)$ and the minimal polynomial $m(s)$ of A.
(c) Find the eigenvalues of A.
(d) Using Cayley-Hamilton Theorem compute A^{-1}.

Answer:

Q4.
Let \mathcal{V} be a Hilbert space and $A: \mathcal{V} \rightarrow \mathcal{V}$ be a linear transformation with adjoint denoted by A^{*}.
(a) Show that $\left(A^{*}\right)^{*}=A$. (Note that A need NOT be a matrix.)
(b) Consider two sequences $\left\{x_{k}\right\}_{k=0}^{\infty}$ and $\left\{\eta_{k}\right\}_{k=0}^{\infty}$ in \mathcal{V}. For all $k \geq 0$ suppose that we have $x_{k+1}=A\left(x_{k}\right)$ for the first sequence and $\eta_{k+1}=A^{*}\left(\eta_{k}\right)$ for the second one. Show that $\left\langle x_{i}, \eta_{j}\right\rangle=\left\langle x_{j}, \eta_{i}\right\rangle$ for all $i, j \geq 0$. (For this part only, you may assume that $\mathcal{V}=\mathbb{C}^{n}$ and A is an $n \times n$ matrix.)

Answer:

