First name:
Last name:
Student ID:
Section:
Signature:

Read before you start:

- There are four questions.
- The examination is closed-book.
- No calculator is allowed.
- The duration of the examination is 110 minutes.

Q1	Q2	$\mathbf{Q3}$	$\mathbf{Q4}$	Total

For the below 5×5 matrix

$$A = \begin{bmatrix} 1 & 0 & 0 & 0 & -1 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & -1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 2 \end{bmatrix}$$

it is known that $\mathbb{C}^5 = \mathcal{N}([A-I]^2) \oplus \mathcal{N}([A-2I])$ where I is the identity matrix of appropriate size. The aim is to find a transformation matrix P such that $\overline{A} = P^{-1}AP$ is block diagonal of the form

$$\bar{A} = \left[\begin{array}{cc} \bar{A}_1 & 0\\ 0 & \bar{A}_2 \end{array} \right]$$

where the first block \bar{A}_1 is associated with the subspace $\mathcal{N}([A-I]^2)$ and the second block \bar{A}_2 with the subspace $\mathcal{N}([A-2I])$.

- (a) Find the sizes of \bar{A}_1 and \bar{A}_2 . (Explain your reasoning.)
- (b) Find a transformation matrix P.
- (c) Compute \bar{A}_2 .

Q2.

Consider the equation

$$\left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \\ 1 & 0 \end{array}\right] \left[\begin{array}{c} x_1 \\ x_2 \end{array}\right] = b \,.$$

Find the solution (or its best approximation) for each of the below cases.

(a) $b = \begin{bmatrix} 5 & -1 & 5 \end{bmatrix}^T$. (b) $b = \begin{bmatrix} 5 & 0 & -5 \end{bmatrix}^T$.

A linear transformation $T: \mathbb{C}^3 \to \mathbb{C}^3$ is known to satisfy

$$T\left(\left[\begin{array}{c} \alpha\\ \beta\\ \gamma\end{array}\right]\right) = \left[\begin{array}{c} \alpha+2\beta\\ \beta+3\gamma\\ -\gamma\end{array}\right] \quad \text{for all} \quad \alpha,\,\beta,\,\gamma\in\mathbb{C}$$

- (a) Find the matrix representation A of transformation T.
- (b) Compute the characteristic polynomial d(s) and the minimal polynomial m(s) of A.
- (c) Find the eigenvalues of A.
- (d) Using Cayley-Hamilton Theorem compute A^{-1} .

Q4.

Let \mathcal{V} be a Hilbert space and $A: \mathcal{V} \to \mathcal{V}$ be a linear transformation with adjoint denoted by A^* .

(a) Show that $(A^*)^* = A$. (Note that A need NOT be a matrix.)

(b) Consider two sequences $\{x_k\}_{k=0}^{\infty}$ and $\{\eta_k\}_{k=0}^{\infty}$ in \mathcal{V} . For all $k \geq 0$ suppose that we have $x_{k+1} = A(x_k)$ for the first sequence and $\eta_{k+1} = A^*(\eta_k)$ for the second one. Show that $\langle x_i, \eta_j \rangle = \langle x_j, \eta_i \rangle$ for all $i, j \geq 0$. (For this part *only*, you may assume that $\mathcal{V} = \mathbb{C}^n$ and A is an $n \times n$ matrix.)