First name:
Last name:
Student ID:
Section:
Signatura

Read before you start:

- There are four questions.
- The examination is closed-book.
- No calculator is allowed.
- The duration of the examination is 110 minutes.

$\mathbf{Q}1$	$\mathbf{Q2}$	$\mathbf{Q3}$	$\mathbf{Q4}$	Total

- (a) Consider the linear space of 2×2 matrices with complex entries. Show that $\langle A, B \rangle := \operatorname{tr}(B^*A)$ is an inner product, where B^* denotes the conjugate transpose of B and $\operatorname{tr}(B^*A)$ is the trace of B^*A .
- (b) Consider the inner product space of 2×2 matrices with the above given inner product. By Gram-Schmidt algorithm compute an orthogonal basis for the subspace below.

$$S = \operatorname{span} \left\{ \begin{bmatrix} 1 & 2 \\ -i & 0 \end{bmatrix}, \begin{bmatrix} 0 & 3 \\ 0 & i \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \right\}$$

- (a) Let function $\nu_a : \mathbb{R}^n \to \mathbb{R}$ satisfy $\nu_a(y) = \max_{\|x\|_1 \le 1} y^T x$. Show that ν_a is a norm in \mathbb{R}^n .
- (b) Let function $\nu_b : \mathbb{R}^n \to \mathbb{R}$ satisfy $\nu_b(y) = \max_{\|x\|_{\infty} \le 1} y^T x$. Show that ν_b is a norm in \mathbb{R}^n .
- (c) For $y = \begin{bmatrix} 2 & -3 & -6 & 8 \end{bmatrix}^T \in \mathbb{R}^4$ compute $\nu_{\mathbf{a}}(y)$ and $\nu_{\mathbf{b}}(y)$.

Consider the inner product space $\{f \mid f: [0, 1] \to \mathbb{R}, f \text{ continuous}\}$ with

$$\langle f, g \rangle := \int_0^1 f(t)g(t)dt$$
.

Using Gram-Schmidt algorithm find an orthogonal basis for each of the below subspaces.

- (a) $S_a = \text{span}\{1, 1+t, 2+t\}.$
- (b) $S_b = \text{span}\{1, 1+t, 1-t^3\}.$

Consider the normed space $\mathcal{C}([-1, 1]) = \{f \mid f : [-1, 1] \to \mathbb{R}, f \text{ continuous}\}$ with

$$||f|| := \int_{-1}^{1} |f(t)| dt$$
.

For the sequence of functions $\{f_n\}_{n=1}^{\infty}$ in $\mathcal{C}([-1, 1])$, where $f_n(t) = e^{-n|t|}$, answer the following questions. (Justify your answers.)

- (a) Is this a convergent sequence?
- (b) Is this a Cauchy sequence?