First name:

Last name: \qquad

Student ID: \qquad

Section:

Signature: \qquad

Read before you start:

- There are four questions.
- The examination is closed-book.
- No calculator is allowed.
- The duration of the examination is 110 minutes.

Q1	Q2	Q3	Q4	Total

Q1.
(a) Consider the linear space of 2×2 matrices with complex entries. Show that $\langle A, B\rangle:=$ $\operatorname{tr}\left(B^{*} A\right)$ is an inner product, where B^{*} denotes the conjugate transpose of B and $\operatorname{tr}\left(B^{*} A\right)$ is the trace of $B^{*} A$.
(b) Consider the inner product space of 2×2 matrices with the above given inner product. By Gram-Schmidt algorithm compute an orthogonal basis for the subspace below.

$$
\mathcal{S}=\operatorname{span}\left\{\left[\begin{array}{rr}
1 & 2 \\
-i & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 3 \\
0 & i
\end{array}\right],\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]\right\}
$$

Answer:

Q2.
(a) Let function $\nu_{\mathrm{a}}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ satisfy $\nu_{\mathrm{a}}(y)=\max _{\|x\|_{1} \leq 1} y^{T} x$. Show that ν_{a} is a norm in \mathbb{R}^{n}.
(b) Let function $\nu_{\mathrm{b}}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ satisfy $\nu_{\mathrm{b}}(y)=\max _{\|x\|_{\infty} \leq 1} y^{T} x$. Show that ν_{b} is a norm in \mathbb{R}^{n}.
(c) For $y=\left[\begin{array}{llll}2 & -3 & -6 & 8\end{array}\right]^{T} \in \mathbb{R}^{4}$ compute $\nu_{\mathrm{a}}(y)$ and $\nu_{\mathrm{b}}(y)$.

Answer:

Q3.
Consider the inner product space $\{f \mid f:[0,1] \rightarrow \mathbb{R}, f$ continuous $\}$ with

$$
\langle f, g\rangle:=\int_{0}^{1} f(t) g(t) d t .
$$

Using Gram-Schmidt algorithm find an orthogonal basis for each of the below subspaces.
(a) $\mathcal{S}_{\mathrm{a}}=\operatorname{span}\{1,1+t, 2+t\}$.
(b) $\mathcal{S}_{\mathrm{b}}=\operatorname{span}\left\{1,1+t, 1-t^{3}\right\}$.

Answer:

Q4.
Consider the normed space $\mathcal{C}([-1,1])=\{f \mid f:[-1,1] \rightarrow \mathbb{R}, f$ continuous $\}$ with

$$
\|f\|:=\int_{-1}^{1}|f(t)| d t
$$

For the sequence of functions $\left\{f_{n}\right\}_{n=1}^{\infty}$ in $\mathcal{C}([-1,1])$, where $f_{n}(t)=e^{-n|t|}$, answer the following questions. (Justify your answers.)
(a) Is this a convergent sequence?
(b) Is this a Cauchy sequence?

Answer:

