First name:	_
Last name:	_
Student ID:	
Section:	_
Signature:	_

Read before you start:

- There are four questions.
- The examination is closed-book.
- No calculator is allowed.
- The duration of the examination is 110 minutes.
- PLEASE EXPLAIN ALL YOUR ANSWERS!

Q1	$\mathbf{Q2}$	$\mathbf{Q3}$	$\mathbf{Q4}$	Total

Consider the set of functions $\mathcal{F} = \{f \mid f : \mathbb{R} \to \mathbb{R}; f(t) = a\cos(t) + b\sin(t); a, b \in \mathbb{R}\}$ which is a linear space over the field of real numbers. For each of the below cases state whether the candidate is a norm or not. (If your answer is "yes" prove it. Otherwise present a counterexample.)

(a) $||f|| = a^2 + b^2$ (b) ||f|| = |a| + |b|(c) ||f|| = |a + b|(d) ||f|| = |a + b| + |b|(e) $||f|| = \max_{t \in \mathbb{R}} |f(t)|$

$$\mathcal{D}_{1} = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}, \qquad \mathcal{R}_{1} = \{1\}, \\ \mathcal{D}_{2} = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \right\}, \qquad \mathcal{R}_{2} = \{3\}.$$

(a) Find all (four) transformation matrices between these bases.

- (b) Find the matrix representation of the function $tr(\cdot)$ with respect to the pair $(\mathcal{D}_1, \mathcal{R}_1)$.
- (c) Using change of basis find the matrix representation of $tr(\cdot)$ with respect to the pair $(\mathcal{D}_2, \mathcal{R}_2)$.

Let $\mathcal{P}(N)$ be the linear space of polynomials of degree $\leq N$ over the field of real numbers. It is known that each $p \in \mathcal{P}(2)$ can be written as

$$p(t) = (t+1)q(t) + r(t)$$

where $q \in \mathcal{P}(1)$ and $r \in \mathcal{P}(0)$ are unique. For example, for $p(t) = 3t^2 + 2t + 1$ we have

$$\underbrace{3t^2 + 2t + 1}_p = (t+1)(\underbrace{3t-1}_q) + \underbrace{2}_r.$$

Define transformations $T_1: \mathcal{P}(2) \to \mathcal{P}(1)$ and $T_2: \mathcal{P}(2) \to \mathcal{P}(0)$ as $T_1(p) := q$ and $T_2(p) := r$.

- (a) Show that T_1 is a linear transformation.
- (b) What is $\mathcal{N}(T_1)$? Is T_1 one-to-one?
- (c) Choosing suitable bases for the linear spaces, find a matrix representation for T_1 .
- (d) Show that T_2 is a linear transformation.
- (e) What is $\mathcal{N}(T_2)$? Is T_2 one-to-one?
- (f) Choosing suitable bases for the linear spaces, find a matrix representation for T_2 .

(a) Given the sets $\mathcal{S}_1, \mathcal{S}_2, \mathcal{S}_3 \subset \mathbb{R}^3$ below

$$\mathcal{S}_{1} = \operatorname{span}\left\{ \begin{bmatrix} 1\\0\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\0 \end{bmatrix} \right\}, \quad \mathcal{S}_{2} = \operatorname{span}\left\{ \begin{bmatrix} 1\\1\\1 \end{bmatrix} \right\}, \quad \mathcal{S}_{3} = \operatorname{span}\left\{ \begin{bmatrix} 2\\1\\1 \end{bmatrix} \right\}$$

determine whether the unions $S_1 \cup S_2$ and $S_1 \cup S_3$ are subspaces or not.

(b) Given an arbitrary linear space \mathcal{V} and two subspaces $\mathcal{Y}, \mathcal{Z} \subset \mathcal{V}$ prove that if $\mathcal{Y} \cup \mathcal{Z}$ is a subspace then either $\mathcal{Y} \subset \mathcal{Z}$ or $\mathcal{Z} \subset \mathcal{Y}$.