First name:

Last name: \qquad

Student ID: \qquad

Section:

Signature: \qquad

Read before you start:

- There are four questions.
- The examination is closed-book.
- No calculator is allowed.
- The duration of the examination is 110 minutes.

Q1	Q2	Q3	Q4	Total

Q1.
Consider the set of functions $\mathcal{V}=\operatorname{span}\{\cos t, \sin t, \cos 2 t, \sin 2 t\}$, which is known to be a vector space over the field of real numbers \mathbb{R}.
(a) Find a basis for \mathcal{V}.
(b) Let $T(f):=\frac{d^{2} f}{d t^{2}}+f$ where $f \in \mathcal{V}$. Show that operator T is linear.
(c) Find the null space of T.
(d) Find the range space of T.
(e) Note that $T: \mathcal{V} \rightarrow \mathcal{V}$. Considering the same basis both for the domain and the range (codomain) obtain the matrix representation of T.

Answer:

Q2.
Let four vectors $v_{1}, v_{2}, v_{3}, v_{4}$ in \mathbb{R}^{3} be such that any three of them make a linearly independent set. Define $\mathcal{S}_{1}:=\operatorname{span}\left\{v_{1}, v_{2}\right\}$ and $\mathcal{S}_{2}:=\operatorname{span}\left\{v_{3}, v_{4}\right\}$. Show that $\operatorname{dim}\left(\mathcal{S}_{1} \cap \mathcal{S}_{2}\right)=1$.

Answer:

Q3.
Let $T: \mathcal{V} \rightarrow \mathcal{W}$ be a linear transformation, where \mathcal{V} is the set of all 2×2 real matrices and \mathcal{W} is the set of all polynomials with degree no greater than two, defined as

$$
T\left(\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]\right):=a_{11}+a_{12} t+\left(a_{21}+a_{22}\right) t^{2}
$$

Let

$$
\mathcal{B}=\left(\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right],\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right],\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\right)
$$

and

$$
\mathcal{C}=\left(1, t, t^{2}\right)
$$

be bases for \mathcal{V} and \mathcal{W}, respectively.
(a) Find the matrix representation of T with respect to the given bases.
(b) Replace basis \mathcal{C} with $\widehat{\mathcal{C}}=\left(1,1+t, 1+t+t^{2}\right)$ and find the new matrix representation of T.

Answer:

Q4.
Give the definition of a field. For the below candidates determine the additive and multiplicative identities $\left(0_{\mathcal{F}}\right.$ and $\left.1_{\mathcal{F}}\right)$ and additive and multiplicative inverses ($-a$ and a^{-1} for an arbitrary element a) if \mathcal{F} is a field. (No need to show that \mathcal{F} satisfies all the axioms of a field.)
(a) \mathcal{F} is the set of rational functions. (A rational function f is such that it can be written as the ratio of two polynomials $f(s)=p(s) / q(s)$ where q is different than the zero polynomial.) Addition and multiplication are defined in the standard sense, i.e., $[f+g](s)=f(s)+g(s)$ and $[f g](s)=f(s) g(s)$.
(b) \mathcal{F} is the extended real line $\mathbb{R} \cup\{-\infty\}$. Addition and multiplication are defined as

$$
\begin{aligned}
a \oplus b & :=\ln \left(e^{a}+e^{b}\right) \\
a \odot b & :=a+b .
\end{aligned}
$$

Moreover, the element $-\infty$ is assumed to satisfy the following.

$$
\begin{aligned}
-\infty+a & =-\infty \quad \forall a \in \mathcal{F} \\
e^{-\infty} & =0 \\
\ln (0) & =-\infty
\end{aligned}
$$

Answer:

