First name:
Last name:
Student ID:
Section:
Signature:

Read before you start:

- There are four questions.
- The examination is closed-book.
- No calculator is allowed.
- The duration of the examination is 110 minutes.

Q 1	$\mathbf{Q2}$	$\mathbf{Q3}$	$\mathbf{Q4}$	Total

Consider the set of functions $\mathcal{V} = \operatorname{span}\{\cos t, \sin t, \cos 2t, \sin 2t\}$, which is known to be a vector space over the field of real numbers \mathbb{R} .

- (a) Find a basis for \mathcal{V} .
- (b) Let $T(f) := \frac{d^2 f}{dt^2} + f$ where $f \in \mathcal{V}$. Show that operator T is linear.
- (c) Find the null space of T.
- (d) Find the range space of T.

(e) Note that $T: \mathcal{V} \to \mathcal{V}$. Considering the same basis both for the domain and the range (codomain) obtain the matrix representation of T.

Q2.

Let four vectors v_1 , v_2 , v_3 , v_4 in \mathbb{R}^3 be such that any three of them make a linearly independent set. Define $S_1 := \operatorname{span}\{v_1, v_2\}$ and $S_2 := \operatorname{span}\{v_3, v_4\}$. Show that $\dim(S_1 \cap S_2) = 1$.

Let $T: \mathcal{V} \to \mathcal{W}$ be a linear transformation, where \mathcal{V} is the set of all 2×2 real matrices and \mathcal{W} is the set of all polynomials with degree no greater than two, defined as

$$T\left(\left[\begin{array}{cc}a_{11} & a_{12}\\a_{21} & a_{22}\end{array}\right]\right) := a_{11} + a_{12}t + (a_{21} + a_{22})t^2.$$

Let

Q3.

$$\mathcal{B} = \left(\left[\begin{array}{rrr} 1 & 1 \\ 0 & 0 \end{array} \right], \left[\begin{array}{rrr} 1 & 0 \\ 1 & 0 \end{array} \right], \left[\begin{array}{rrr} 1 & 0 \\ 0 & 1 \end{array} \right], \left[\begin{array}{rrr} 0 & 1 \\ 1 & 0 \end{array} \right] \right)$$

and

$$\mathcal{C} = (1, t, t^2)$$

be bases for \mathcal{V} and \mathcal{W} , respectively.

(a) Find the matrix representation of T with respect to the given bases.

(b) Replace basis C with $\widehat{C} = (1, 1+t, 1+t+t^2)$ and find the new matrix representation of T.

Give the definition of a field. For the below candidates determine the additive and multiplicative identities $(0_{\mathcal{F}} \text{ and } 1_{\mathcal{F}})$ and additive and multiplicative inverses $(-a \text{ and } a^{-1} \text{ for an arbitrary element } a)$ if \mathcal{F} is a field. (No need to show that \mathcal{F} satisfies all the axioms of a field.)

(a) \mathcal{F} is the set of rational functions. (A rational function f is such that it can be written as the ratio of two polynomials f(s) = p(s)/q(s) where q is different than the zero polynomial.) Addition and multiplication are defined in the standard sense, i.e., [f+g](s) = f(s) + g(s) and [fg](s) = f(s)g(s).

(b) \mathcal{F} is the extended real line $\mathbb{R} \cup \{-\infty\}$. Addition and multiplication are defined as

$$a \oplus b := \ln(e^a + e^b)$$

 $a \odot b := a + b.$

Moreover, the element $-\infty$ is assumed to satisfy the following.

$$-\infty + a = -\infty \quad \forall a \in \mathcal{F}$$
$$e^{-\infty} = 0$$
$$\ln(0) = -\infty.$$