First name:

\qquad

Last name: \qquad

Student ID: \qquad

Section:

\qquad
Signature: \qquad

Read before you start:

- There are six questions.
- The examination is closed-book.
- No calculator is allowed.
- The duration of the examination is 150 minutes.

Q1	Q2	Q3	Q4	Q5	Q6	Total

Q1.
Let \mathcal{P}_{3} be the set of all polynomials $f(t)$ with degree $(f) \leq 3$. Consider the mapping $\ell: \mathcal{P}_{3} \rightarrow \mathcal{P}_{3}$ defined as

$$
\ell(f):=\frac{d^{2} f}{d t^{2}}+3 \frac{d f}{d t} .
$$

(a) Show that ℓ is a linear mapping.
(b) Find a basis for \mathcal{P}_{3}.
(c) Find bases for the null and range spaces of ℓ.
(d) Find the matrix representation of ℓ with respect to the basis chosen in part (b).

Answer:

Q2.
Let $Q \in \mathbb{R}^{n \times n}$ be a real symmetric positive definite matrix. We define $\langle x, y\rangle_{Q}:=y^{*} Q x$ for $x, y \in \mathbb{C}^{n}$.
(a) Show that $\langle\cdot, \cdot\rangle_{Q}$ is an inner product.
(b) Given

$$
Q=\left[\begin{array}{lll}
2 & 0 & 1 \\
0 & 3 & 0 \\
1 & 0 & 2
\end{array}\right] \quad \text { and } \quad \mathcal{S}=\left\{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]\right\}
$$

determine whether set \mathcal{S} is orthogonal with respect to our inner product $\langle\cdot, \cdot\rangle_{Q}$. If not, apply Gram-Schmidt to orthogonalize it (with respect to $\langle\cdot, \cdot\rangle_{Q}$).

Answer:

Q3.
(a) Obtain the Jordan form and the transformation matrix for the below matrix.

$$
\left[\begin{array}{rrrr}
2 & 2 & 2 & 0 \\
0 & 3 & 1 & 0 \\
0 & -1 & 1 & 0 \\
0 & -1 & -1 & 1
\end{array}\right]
$$

(b) Let matrix A have the characteristic polynomial $d(s)=(s-2)^{10}$ and the minimal polynomial $m(s)=(s-2)^{3}$. Moreover, it is known that $\operatorname{rank}(A-2 I)=6$ and $\operatorname{rank}(A-2 I)^{2}=3$. Find possible Jordan form(s) of A.

Answer:

Q4.
Let

$$
A=\left[\begin{array}{rr}
5 & 1 \\
-4 & 1
\end{array}\right]
$$

(a) Compute the eigenvalues and eigenvectors of A.
(b) Compute $\sin (\pi A)$ and $\cos (\pi A)$.
(c) Compute the eigenvalues and eigenvectors of $\sin (\pi A)$.

Answer:

Q5.
Let

$$
A=\left[\begin{array}{rrr}
1 & 0 & -1 \\
1 & 1 & 2 \\
1 & 0 & -1
\end{array}\right] \quad \text { and } \quad b=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]
$$

Compute the minimum norm $\bar{x} \in \mathbb{R}^{3}$ that minimizes $\|A x-b\|$.

Answer:

Q6.

Consider the linear space of $n \times n$ real matrices $\mathbb{R}^{n \times n}$ over the field of real numbers \mathbb{R}. Let \mathcal{S} denote the set of all $n \times n$ real symmetric matrices.
(a) Show that \mathcal{S} is a subspace of $\mathbb{R}^{n \times n}$.
(b) Let function $f: \mathcal{S} \rightarrow \mathbb{R}$ be defined as $f(A):=\max _{i}\left|\lambda_{i}(A)\right|$, where $\lambda_{i}(A)$ denote the i th eigenvalue of matrix $A \in \mathcal{S}$. Show that f is a norm on ${ }^{i}$.

Answer:

