First name:
Last name:
Student ID:
Section:
Signature:

Read before you start:

- There are six questions.
- The examination is closed-book.
- No calculator is allowed.
- The duration of the examination is 150 minutes.

Q1	$\mathbf{Q2}$	$\mathbf{Q3}$	$\mathbf{Q4}$	$\mathbf{Q5}$	$\mathbf{Q6}$	Total

Q1.

Let \mathcal{P}_3 be the set of all polynomials f(t) with degree $(f) \leq 3$. Consider the mapping $\ell : \mathcal{P}_3 \to \mathcal{P}_3$ defined as

$$\ell(f) := \frac{d^2f}{dt^2} + 3\frac{df}{dt} \,.$$

- (a) Show that ℓ is a linear mapping.
- (b) Find a basis for \mathcal{P}_3 .
- (c) Find bases for the null and range spaces of ℓ .
- (d) Find the matrix representation of ℓ with respect to the basis chosen in part (b).

Let $Q \in \mathbb{R}^{n \times n}$ be a real symmetric positive definite matrix. We define $\langle x, y \rangle_Q := y^*Qx$ for $x, y \in \mathbb{C}^n$.

(a) Show that $\langle \cdot , \cdot \rangle_Q$ is an inner product.

(b) Given

$$Q = \begin{bmatrix} 2 & 0 & 1 \\ 0 & 3 & 0 \\ 1 & 0 & 2 \end{bmatrix} \quad \text{and} \quad \mathcal{S} = \left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} \right\}$$

determine whether set S is orthogonal with respect to our inner product $\langle \cdot, \cdot \rangle_Q$. If not, apply Gram-Schmidt to orthogonalize it (with respect to $\langle \cdot, \cdot \rangle_Q$).

Answer:

Q2.

(a) Obtain the Jordan form and the transformation matrix for the below matrix.

_

(b) Let matrix A have the characteristic polynomial $d(s) = (s-2)^{10}$ and the minimal polynomial $m(s) = (s-2)^3$. Moreover, it is known that rank (A-2I) = 6 and rank $(A-2I)^2 = 3$. Find possible Jordan form(s) of A.

Let

$$A = \left[\begin{array}{cc} 5 & 1 \\ -4 & 1 \end{array} \right]$$

(a) Compute the eigenvalues and eigenvectors of A.

(b) Compute $\sin(\pi A)$ and $\cos(\pi A)$.

(c) Compute the eigenvalues and eigenvectors of $\sin(\pi A)$.

Let

	1	0	-1			$\begin{bmatrix} 1 \end{bmatrix}$
A =	1	1	2	and	b =	2
	1	0	-1			3

Compute the minimum norm $\bar{x} \in \mathbb{R}^3$ that minimizes ||Ax - b||.

Q6.

Consider the linear space of $n \times n$ real matrices $\mathbb{R}^{n \times n}$ over the field of real numbers \mathbb{R} . Let \mathcal{S} denote the set of all $n \times n$ real symmetric matrices.

(a) Show that S is a subspace of $\mathbb{R}^{n \times n}$.

(b) Let function $f : S \to \mathbb{R}$ be defined as $f(A) := \max_i |\lambda_i(A)|$, where $\lambda_i(A)$ denote the *i*th eigenvalue of matrix $A \in S$. Show that f is a norm on $\overset{i}{S}$.