Q1. In each part below some information is given regarding a matrix with characteristic polynomial $d(s)=(s-2)^{10}$. Find possible Jordan forms of that matrix.
(a) $m(s)=(s-2)^{3}, \operatorname{rank}(A-2 I)=6, \operatorname{rank}(A-2 I)^{2}=3$.
(b) $m(s)=(s-2)^{4}, \operatorname{dim} \mathcal{N}(A-2 I)=3, \operatorname{dim} \mathcal{N}(A-2 I)^{2}=6, \operatorname{dim} \mathcal{N}(A-2 I)^{3}=8$.

Q2. Obtain the Jordan form and the transformation matrix for the below matrix.

$$
\left[\begin{array}{rrrr}
2 & 2 & 2 & 0 \\
0 & 3 & 1 & 0 \\
0 & -1 & 1 & 0 \\
0 & -1 & -1 & 1
\end{array}\right]
$$

Q3. Obtain the Jordan form for the below matrices.

$$
\left[\begin{array}{rrrrr}
1 & 0 & 0 & 0 & 0 \\
0 & 0 & -1 & -1 & 0 \\
0 & 1 & 2 & 2 & 1 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right], \quad\left[\begin{array}{rrrr}
-1 & 0 & -1 & 0 \\
0 & -1 & 0 & -1 \\
-1 & 0 & -1 & 0 \\
0 & -1 & 0 & -1
\end{array}\right], \quad\left[\begin{array}{lllll}
0 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Q4. Let $A \in \mathbb{C}^{n \times n}$ have $d(s)=s^{k}(s-\alpha)^{n-k}$ and $m(s)=s^{\ell}(s-\alpha)$. Determine $\operatorname{dim} \mathcal{N}\left(A^{\ell}\right)$ and $\operatorname{dim} \mathcal{N}(A-\alpha I)$.

Q5. Given $A \in \mathbb{C}^{n \times n}$, let λ_{i} be an eigenvalue of A. It is known that $\operatorname{dim} \mathcal{N}\left(A-\lambda_{i} I\right)=2$, $\operatorname{dim} \mathcal{N}\left(A-\lambda_{i} I\right)^{2}=4, \operatorname{dim} \mathcal{N}\left(A-\lambda_{i} I\right)^{3}=5$, and $\operatorname{dim} \mathcal{N}\left(A-\lambda_{i} I\right)^{4}=\operatorname{dim} \mathcal{N}\left(A-\lambda_{i} I\right)^{5}=6$. Find the Jordan block corresponding to λ_{i}.

Q6. Consider the polynomials $d_{1}(s)=(s-1)^{2}(s-2)^{2}$ and $d_{2}(s)=\left(s^{2}+1\right)^{2}$. One of these polynomials is known to be the characteristic polynomial of a Hermitian matrix A (Can you tell which one?) Determine the Jordan form of A.

Q7. Let $\omega>0$. For

$$
A=\left[\begin{array}{rr}
0 & \omega \\
-\omega & 0
\end{array}\right]
$$

find $e^{A t}$ and $\cos (A t)$.
Q8. For each of the below A matrices

$$
\left[\begin{array}{rrr}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & -2 & -3
\end{array}\right], \quad\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right], \quad\left[\begin{array}{rrr}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & -1 & 0
\end{array}\right]
$$

find a second order polynomial $r(s)$ such that $r(A)=e^{A}$.

Q9. Let A be a nonsingular Hermitian matrix. Prove the following.
(a) A^{-1} is Hermitian.
(b) If A is positive definite then A^{-1} is positive definite, too.

Q10. Given two vectors $u, v \in \mathbb{C}^{n}$, find the Jordan form of the matrix $A=u v^{*}$.
Q11. ${ }^{1}$ Let

$$
u=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right] \quad \text { and } \quad r=\left[\begin{array}{c}
0.1 \\
0.2 \\
0.3 \\
0.4
\end{array}\right]
$$

Design a 4 -by- 4 matrix G simultaneously satisfying the below conditions.

- $G^{k}=u r^{T}$ for all $k \geq 3$.
- $G^{2} \neq u r^{T}$.

Show that $\left[\alpha G+(1-\alpha) u r^{T}\right]^{k}=u r^{T}$ for all $\alpha \in \mathbb{R}$ and $k \geq 3$.
Q12. Show that there cannot exist a 3 -by- 3 matrix A satisfying the below equality.

$$
A^{2}=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]
$$

Q13. ${ }^{2}$ Let Q and R be two Hermitian positive definite matrices with $Q^{2}=R^{2}$. Prove $Q=R$.
Q14. Let $A \in \mathbb{C}^{n \times n}$. Prove the following.
(a) If each $v \in \mathbb{C}^{n}$ is an eigenvector of $A \in \mathbb{C}^{n \times n}$, then $A=\lambda I$ for some $\lambda \in \mathbb{C}$.
(b) Suppose A^{-1} exists. Then $\lambda \in \mathbb{C}$ is an eigenvalue of A if λ^{-1} is an eigenvalue of A^{-1}.
(c) For each $k=1,2, \ldots, n$ we can find a subspace \mathcal{U}_{k} invariant under A with $\operatorname{dim} \mathcal{U}_{k}=k$.

Q15. Let A and B be arbitrary matrices in $\mathbb{C}^{n \times n}$. Prove or disprove the below claims.
(a) If $e^{A t}=e^{B t}$ for all $t \in \mathbb{R}$ then $A=B$.
(b) $e^{A}=e^{B}$ implies $A=B$.
(c) $\left(e^{A}\right)^{-1}$ exists.

[^0]
[^0]: ${ }^{1}$ This problem may be difficult. Feel free to use MATLAB.
 ${ }^{2}$ This problem may be difficult.

