Q1. In each part below some information is given regarding a matrix with characteristic polynomial $d(s) = (s-2)^{10}$. Find possible Jordan forms of that matrix.

(a)
$$m(s) = (s-2)^3$$
, rank $(A-2I) = 6$, rank $(A-2I)^2 = 3$.

(b) $m(s) = (s-2)^4$, dim $\mathcal{N}(A-2I) = 3$, dim $\mathcal{N}(A-2I)^2 = 6$, dim $\mathcal{N}(A-2I)^3 = 8$.

Q2. Obtain the Jordan form and the transformation matrix for the below matrix.

Q3. Obtain the Jordan form for the below matrices.

1	0	0	0	0]	Γ 1	0	1	0]		0	1	1	0	0]	
0	0	-1	-1	0			-1	$0 \\ -1$			0	0	1	0	1	
0	1	2	2	1	,					,	0	0	0	0	0	
0	0	0	1	0							0	0	0	0	1	
0	0	0	0	1					-1]		0	0	0	0	0	

Q4. Let $A \in \mathbb{C}^{n \times n}$ have $d(s) = s^k (s - \alpha)^{n-k}$ and $m(s) = s^\ell (s - \alpha)$. Determine dim $\mathcal{N}(A^\ell)$ and dim $\mathcal{N}(A - \alpha I)$.

Q5. Given $A \in \mathbb{C}^{n \times n}$, let λ_i be an eigenvalue of A. It is known that $\dim \mathcal{N}(A - \lambda_i I) = 2$, $\dim \mathcal{N}(A - \lambda_i I)^2 = 4$, $\dim \mathcal{N}(A - \lambda_i I)^3 = 5$, and $\dim \mathcal{N}(A - \lambda_i I)^4 = \dim \mathcal{N}(A - \lambda_i I)^5 = 6$. Find the Jordan block corresponding to λ_i .

Q6. Consider the polynomials $d_1(s) = (s-1)^2(s-2)^2$ and $d_2(s) = (s^2+1)^2$. One of these polynomials is known to be the characteristic polynomial of a Hermitian matrix A (Can you tell which one?) Determine *the* Jordan form of A.

Q7. Let $\omega > 0$. For

$$A = \left[\begin{array}{cc} 0 & \omega \\ -\omega & 0 \end{array} \right]$$

find e^{At} and $\cos(At)$.

Q8. For each of the below A matrices

$$\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & -2 & -3 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{bmatrix}$$

find a second order polynomial r(s) such that $r(A) = e^A$.

Q9. Let *A* be a nonsingular Hermitian matrix. Prove the following.

- (a) A^{-1} is Hermitian.
- (b) If A is positive definite then A^{-1} is positive definite, too.

Q10. Given two vectors $u, v \in \mathbb{C}^n$, find the Jordan form of the matrix $A = uv^*$. **Q11.**¹ Let

$$u = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} \text{ and } r = \begin{bmatrix} 0.1 \\ 0.2 \\ 0.3 \\ 0.4 \end{bmatrix}$$

Design a 4-by-4 matrix G simultaneously satisfying the below conditions.

• $G^k = ur^T$ for all $k \ge 3$.

•
$$G^2 \neq ur^T$$
.

Show that $[\alpha G + (1 - \alpha)ur^T]^k = ur^T$ for all $\alpha \in \mathbb{R}$ and $k \ge 3$.

Q12. Show that there cannot exist a 3-by-3 matrix A satisfying the below equality.

$$A^2 = \left[\begin{array}{rrr} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{array} \right]$$

Q13.² Let Q and R be two Hermitian positive definite matrices with $Q^2 = R^2$. Prove Q = R.

Q14. Let $A \in \mathbb{C}^{n \times n}$. Prove the following.

- (a) If each $v \in \mathbb{C}^n$ is an eigenvector of $A \in \mathbb{C}^{n \times n}$, then $A = \lambda I$ for some $\lambda \in \mathbb{C}$.
- (b) Suppose A^{-1} exists. Then $\lambda \in \mathbb{C}$ is an eigenvalue of A if λ^{-1} is an eigenvalue of A^{-1} .
- (c) For each k = 1, 2, ..., n we can find a subspace \mathcal{U}_k invariant under A with dim $\mathcal{U}_k = k$.

Q15. Let A and B be arbitrary matrices in $\mathbb{C}^{n \times n}$. Prove or disprove the below claims.

- (a) If $e^{At} = e^{Bt}$ for all $t \in \mathbb{R}$ then A = B.
- (b) $e^A = e^B$ implies A = B.
- (c) $(e^A)^{-1}$ exists.

¹This problem may be difficult. Feel free to use MATLAB.

²This problem may be difficult.