Q1. Let $n \times n$ matrix A have n distinct eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$. Given some polynomial $p(s)$, show that the eigenvalues of matrix $p(A)$ are $p\left(\lambda_{1}\right), p\left(\lambda_{2}\right), \ldots, p\left(\lambda_{n}\right)$.

Q2. Consider the standard inner product $\langle x, y\rangle:=y^{*} x$ in \mathbb{C}^{n}. Let $\|x\|=\langle x, x\rangle^{1 / 2}$ for $x \in \mathbb{C}^{n}$ and $\|A\|=\max _{\|x\|=1}\|A x\|$ for $A \in \mathbb{C}^{n \times n}$. Show that $\|A\|^{2}$ equals the largest eigenvalue of $A^{*} A$. Hint: The eigenvalues of $A^{*} A$ are real and nonnegative. Moreover, $A^{*} A$ has n eigenvectors that are pairwise orthogonal.

Q3. Let $\mathbb{C}^{n}=\mathcal{U} \oplus \mathcal{V}$ where subspace \mathcal{U} is known to be invariant under some linear transformation $A: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$. Show that with respect to a basis formed by concatenating bases for \mathcal{U} and \mathcal{V}, mapping A has a matrix representation

$$
\left[\begin{array}{cc}
A_{1} & A_{2} \\
0 & A_{3}
\end{array}\right]
$$

Determine also the size of each block in this representation.
Q4. Let A be a 2×2 matrix with $A^{2}=0$. Prove that either one of the following must be true.

- $A=0$.
- There exists P such that

$$
P^{-1} A P=\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]
$$

Q5. Let A be a 2×2 matrix. Prove that there exists P such that either

$$
P^{-1} A P=\left[\begin{array}{cc}
\alpha & 0 \\
0 & \beta
\end{array}\right] \quad \text { or } \quad P^{-1} A P=\left[\begin{array}{cc}
\alpha & 0 \\
1 & \alpha
\end{array}\right]
$$

Hint: See Q4.
Q6. Let A be an $n \times n$ matrix with $A^{k}=0$ for some integer k. Prove that $A^{n}=0$.
Q7. Find the characteristic polynomial $d(s)$ and minimal polynomial $m(s)$ for the below matrices.

$$
\left[\begin{array}{ccccc}
\lambda_{1} & 0 & 0 & 0 & 0 \\
1 & \lambda_{1} & 0 & 0 & 0 \\
0 & 0 & \lambda_{1} & 0 & 0 \\
0 & 0 & 0 & \lambda_{2} & 0 \\
0 & 0 & 0 & 0 & \lambda_{2}
\end{array}\right], \quad\left[\begin{array}{ccccc}
\lambda_{1} & 0 & 0 & 0 & 0 \\
1 & \lambda_{1} & 0 & 0 & 0 \\
0 & 1 & \lambda_{1} & 0 & 0 \\
0 & 0 & 1 & \lambda_{1} & 0 \\
0 & 0 & 0 & 0 & \lambda_{1}
\end{array}\right], \quad\left[\begin{array}{ccccc}
\lambda_{1} & 0 & 0 & 0 & 0 \\
1 & \lambda_{1} & 0 & 0 & 0 \\
0 & 0 & \lambda_{1} & 0 & 0 \\
0 & 0 & 1 & \lambda_{1} & 0 \\
0 & 0 & 0 & 0 & \lambda_{1}
\end{array}\right]
$$

Q8. Let $v \in \mathbb{C}^{n}$ be a nonzero vector.
(a) Show that $P=\frac{v v^{*}}{v^{*} v}$ is an orthogonal projection matrix. What is the subspace that P projects onto?
(b) Find $d(s)$ and $m(s)$ for P.

Q9. Consider Hilbert space $\mathcal{V}=\{f \mid f:[0,2 \pi] \rightarrow \mathbb{C}, f$ continuous $\}$ with inner product $\langle f, g\rangle:=\int_{0}^{2 \pi} f(t) \overline{g(t)} d t$. Let $f_{1}, f_{2}, f_{3} \in \mathcal{V}$ satisfy $f_{1}(t)=1, f_{2}(t)=t$, and $f_{3}(t)=e^{j t}$ for all t. Define $\mathcal{M}:=\operatorname{span}\left\{f_{2}, f_{3}\right\}$. For which $g \in \mathcal{M}$ is $\left\|f_{1}-g\right\|$ minimum?

Q10. Consider Hilbert space $\mathcal{V}=\{f \mid f:[-\pi, \pi] \rightarrow \mathbb{C}, f$ continuous $\}$ with inner product $\langle f, g\rangle:=\int_{-\pi}^{\pi} f(t) \overline{g(t)} d t$. Define $\mathcal{M}:=\operatorname{span}\left\{1, \sin t, \cos t, e^{j t}, e^{-j t}\right\}$.
(a) Determine $\operatorname{dim} M$.
(b) Find the orthogonal projections of the following functions onto \mathcal{M} : $f_{1}(t)=e^{t}, f_{2}(t)=5$, $f_{3}(t)=e^{-j 2 t}$.

Q11. Consider the space of 2×2 matrices with $\langle A, B\rangle:=\operatorname{tr}\left(B^{*} A\right)$.
(a) Find a basis for \mathcal{M}^{\perp} where

$$
\mathcal{M}=\operatorname{span}\left\{\left[\begin{array}{ll}
1 & 0 \\
0 & j
\end{array}\right]\right\}
$$

(b) Find the orthogonal projections of the below matrices onto \mathcal{M}.

$$
\left[\begin{array}{rr}
5 j & 0 \\
0 & 5
\end{array}\right], \quad\left[\begin{array}{rr}
0 & 2 \\
-3 & 0
\end{array}\right], \quad\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]
$$

Q12. Consider the linear system of equations

$$
\left[\begin{array}{lll}
3 & 4 & 1 \\
0 & 2 & 2 \\
0 & 0 & 7 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
\alpha \\
\beta \\
\gamma
\end{array}\right]=\left[\begin{array}{c}
14 \\
10 \\
21 \\
6 \\
2
\end{array}\right]
$$

(a) Comment on the existence and uniqueness of the solution.
(b) Find the exact (or approximate) solution.

Q13. Consider

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=b
$$

Find the solution (or approximate solution) for $b=\left[\begin{array}{lll}5 & -1 & 5\end{array}\right]^{T}$ and $b=\left[\begin{array}{lll}5 & 0 & -5\end{array}\right]^{T}$.
Q14. Let

$$
A=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]\left[\begin{array}{lll}
3 & 2 & 1
\end{array}\right]
$$

(a) Find bases for $\mathcal{R}(A)$ and $\mathcal{R}\left(A^{T}\right)$.
(b) Find bases for $\mathcal{N}(A)$ and $\mathcal{N}\left(A^{T}\right)$.
(c) Show that $\mathcal{R}(A) \perp \mathcal{N}\left(A^{T}\right)$.

Q15. Consider equation $A x=b$, where $A=v v^{*}$ for some $v \in \mathbb{C}^{n}$.
(a) Find $\mathcal{R}(A)$ and $\mathcal{N}(A)$.
(b) Discuss the existence and uniqueness of the solution.

Q16. Note that matrix $Q \in \mathbb{R}^{n \times n}$ is said to be orthogonal if $Q^{T} Q=I$ and that matrix $S \in \mathbb{R}^{n \times n}$ is said to be skew-symmetric if $S+S^{T}=0$. Prove the following.
(a) If $\lambda \in \mathbb{C}$ is an eigenvalue of an orthogonal matrix then $|\lambda|=1$.
(b) If $\lambda \in \mathbb{C}$ is an eigenvalue of a skew-symmetric matrix then $\operatorname{Re}(\lambda)=0$.
(c) If S is skew-symmetric then e^{S} is orthogonal, where $e^{S}=I+S+\frac{S^{2}}{2}+\frac{S^{3}}{3!}+\ldots$

Q17. Find $d(s)$ and $m(s)$ for the matrix below. Hint: The matrix has a single eigenvalue.

$$
\left[\begin{array}{rrrrr}
1 & 0 & 0 & 0 & 0 \\
0 & 0 & -1 & -1 & 0 \\
0 & 1 & 2 & 2 & 1 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

