EE501 HW2

- **Q1.** Consider linear space $\mathcal{V} = \{f | f : [0, 1] \to \mathbb{R}, f \text{ differentiable}\}.$
- (a) Show that $||f|| := \max_{t \in [0,1]} |f(t)| + \max_{t \in [0,1]} |\dot{f}(t)|$ is a norm on \mathcal{V} .
- (b) Is $||f|| := \max_{t \in [0,1]} |\dot{f}(t)|$ a norm on \mathcal{V} ?

Q2. Show that for all $x \in \mathbb{R}^n$ the following hold.

- (a) $||x||_2 \le ||x||_1 \le \sqrt{n} ||x||_2$.
- (b) $||x||_{\infty} \le ||x||_2 \le \sqrt{n} ||x||_{\infty}$.
- (c) $||x||_{\infty} \le ||x||_1 \le n ||x||_{\infty}$.

Q3. Let \mathcal{V} be a normed space. Show that $||x|| - ||y|| \le ||x+y||$ for all $x, y \in \mathcal{V}$.

Q4. Consider the linear space of $n \times n$ matrices with complex entries. Show that $\langle A, B \rangle := \operatorname{tr}(B^*A)$ is an inner product, where A^* denotes the conjugate transpose of A and $\operatorname{tr}(A)$ is the trace of A.

Q5. Let \mathcal{V} be a finite-dimensional inner product space. Suppose a linear mapping $P: \mathcal{V} \to \mathcal{V}$ satisfies the following.

- $P^2 = P$.
- $\langle x, y \rangle = 0$ for all $x \in \mathcal{N}(P)$ and $y \in \mathcal{R}(P)$.
- There exists some $x \in \mathcal{V}$ such that $Px \neq 0$.

Prove the following.

(a)
$$\mathcal{N}(P) \cap \mathcal{R}(P) = \{0\}.$$

(b) $\max_{\|x\| \neq 0} \frac{\|Px\|}{\|x\|} = 1.$

Q6 [1]. Let

$$e_1 := \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \quad e_2 := \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \quad e_3 := \begin{bmatrix} 0\\0\\1 \end{bmatrix}$$

be vectors in \mathbb{R}^3 and

$$\begin{array}{rcl} f_1 & = & e_1 + e_2 + e_3 \\ f_2 & = & e_2 + e_3 \\ f_3 & = & e_3 \end{array}$$

- (a) Apply Gram-Schmidt process to basis (f_1, f_2, f_3) .
- (b) Apply Gram-Schmidt process to basis (f_3, f_2, f_1) .

Q7 [1]. Consider the inner product space $\{f | f : [-\pi, \pi] \to \mathbb{R}, f \text{ continuous}\}$ with

$$\langle f, \, g \rangle := \int_{-\pi}^{\pi} f(t)g(t)dt$$

Verify that for any positive integer n, the set

$$\left\{\frac{1}{\sqrt{2\pi}}, \frac{\sin(t)}{\sqrt{\pi}}, \frac{\sin(2t)}{\sqrt{\pi}}, \dots, \frac{\sin(nt)}{\sqrt{\pi}}, \frac{\cos(t)}{\sqrt{\pi}}, \frac{\cos(2t)}{\sqrt{\pi}}, \dots, \frac{\cos(nt)}{\sqrt{\pi}}\right\}$$

is orthonormal.

Q8 [1]. Prove or disprove the following claim.

Claim. There is an inner product on \mathbb{R}^2 whose induced norm is $||x|| = |x_1| + |x_2|$.

Q9 [1]. Let \mathcal{V} be a finite-dimensional inner product space. Given vectors $x, y \in \mathcal{V}$ show that the statements below are equivalent.

- $\langle x, y \rangle = 0.$
- $||x|| \le ||x + \alpha y||$ for all $\alpha \in \mathbb{C}$.

Q10 [2]. Show that $\langle x, y \rangle := y^* A x$ is an inner product in \mathbb{C}^2 for

$$A = \left[\begin{array}{cc} 1 & i \\ -i & 2 \end{array} \right]$$

Compute $\langle x, y \rangle$ for $x = \begin{bmatrix} 1 & 2 \end{bmatrix}^T$ and $y = \begin{bmatrix} i & 1+i \end{bmatrix}^T$.

Q11 [2]. Let \mathcal{B} be a basis for a finite-dimensional inner product space. Prove the following.

(a) If
$$\langle x, z \rangle = 0$$
 for all $z \in \mathcal{B}$, then $x = 0$.

(b) If $\langle x, z \rangle = \langle y, z \rangle$ for all $z \in \mathcal{B}$, then x = y.

Q12 [2]. Let $T : \mathcal{V} \to \mathcal{V}$ be a linear transformation on an inner product space \mathcal{V} with dimension n. Suppose ||Tx|| = ||x|| for all x. Prove that $\dim(\mathcal{R}(T)) = n$.

Q13 [2]. Let \mathcal{V} be an inner product space and $\{v_1, v_2, \ldots, v_m\}$ be an orthonormal subset of \mathcal{V} . Show that for all $x \in \mathcal{V}$ we can write

$$|x||^2 \ge \sum_{i=1}^m |\langle x, v_i \rangle|^2.$$

Q14 [2]. Consider inner product space $\mathcal{V} = \{f | f : [0, 1] \to \mathbb{R}, f \text{ continuous}\}$ with inner product $\langle f, g \rangle := \int_0^1 f(t)g(t)dt$. Find an orthonormal basis for the subspace of \mathcal{V} spanned by set $\{\sqrt{t}, t\}$.

References

[1] I. Lankham, B. Nachtergaele, and A. Schilling. Lecture Notes for MAT67. Fall 2007.

[2] Special thanks to J. Hernandez.