Q1. Consider linear space $\mathcal{V}=\{f \mid f:[0,1] \rightarrow \mathbb{R}, f$ differentiable $\}$.
(a) Show that $\|f\|:=\max _{t \in[0,1]}|f(t)|+\max _{t \in[0,1]}|\dot{f}(t)|$ is a norm on \mathcal{V}.
(b) Is $\|f\|:=\max _{t \in[0,1]}|\dot{f}(t)|$ a norm on \mathcal{V} ?

Q2. Show that for all $x \in \mathbb{R}^{n}$ the following hold.
(a) $\|x\|_{2} \leq\|x\|_{1} \leq \sqrt{n}\|x\|_{2}$.
(b) $\|x\|_{\infty} \leq\|x\|_{2} \leq \sqrt{n}\|x\|_{\infty}$.
(c) $\|x\|_{\infty} \leq\|x\|_{1} \leq n\|x\|_{\infty}$.

Q3. Let \mathcal{V} be a normed space. Show that $\|x\|-\|y\| \leq\|x+y\|$ for all $x, y \in \mathcal{V}$.
Q4. Consider the linear space of $n \times n$ matrices with complex entries. Show that $\langle A, B\rangle:=$ $\operatorname{tr}\left(B^{*} A\right)$ is an inner product, where A^{*} denotes the conjugate transpose of A and $\operatorname{tr}(A)$ is the trace of A.

Q5. Let \mathcal{V} be a finite-dimensional inner product space. Suppose a linear mapping $P: \mathcal{V} \rightarrow \mathcal{V}$ satisfies the following.

- $P^{2}=P$.
- $\langle x, y\rangle=0$ for all $x \in \mathcal{N}(P)$ and $y \in \mathcal{R}(P)$.
- There exists some $x \in \mathcal{V}$ such that $P x \neq 0$.

Prove the following.
(a) $\mathcal{N}(P) \cap \mathcal{R}(P)=\{0\}$.
(b) $\max _{\|x\| \neq 0} \frac{\|P x\|}{\|x\|}=1$.

Q6 [1]. Let

$$
e_{1}:=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], \quad e_{2}:=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right], \quad e_{3}:=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

be vectors in \mathbb{R}^{3} and

$$
\begin{aligned}
& f_{1}=e_{1}+e_{2}+e_{3} \\
& f_{2}=e_{2}+e_{3} \\
& f_{3}=e_{3}
\end{aligned}
$$

(a) Apply Gram-Schmidt process to basis $\left(f_{1}, f_{2}, f_{3}\right)$.
(b) Apply Gram-Schmidt process to basis $\left(f_{3}, f_{2}, f_{1}\right)$.

Q7 [1]. Consider the inner product space $\{f \mid f:[-\pi, \pi] \rightarrow \mathbb{R}, f$ continuous $\}$ with

$$
\langle f, g\rangle:=\int_{-\pi}^{\pi} f(t) g(t) d t
$$

Verify that for any positive integer n, the set

$$
\left\{\frac{1}{\sqrt{2 \pi}}, \frac{\sin (t)}{\sqrt{\pi}}, \frac{\sin (2 t)}{\sqrt{\pi}}, \ldots, \frac{\sin (n t)}{\sqrt{\pi}}, \frac{\cos (t)}{\sqrt{\pi}}, \frac{\cos (2 t)}{\sqrt{\pi}}, \ldots, \frac{\cos (n t)}{\sqrt{\pi}}\right\}
$$

is orthonormal.

Q8 [1]. Prove or disprove the following claim.
Claim. There is an inner product on \mathbb{R}^{2} whose induced norm is $\|x\|=\left|x_{1}\right|+\left|x_{2}\right|$.
Q9 [1]. Let \mathcal{V} be a finite-dimensional inner product space. Given vectors $x, y \in \mathcal{V}$ show that the statements below are equivalent.

- $\langle x, y\rangle=0$.
- $\|x\| \leq\|x+\alpha y\|$ for all $\alpha \in \mathbb{C}$.

Q10 [2]. Show that $\langle x, y\rangle:=y^{*} A x$ is an inner product in \mathbb{C}^{2} for

$$
A=\left[\begin{array}{rr}
1 & i \\
-i & 2
\end{array}\right]
$$

Compute $\langle x, y\rangle$ for $x=\left[\begin{array}{ll}1 & 2\end{array}\right]^{T}$ and $y=\left[\begin{array}{ll}i & 1+i\end{array}\right]^{T}$.
Q11 [2]. Let \mathcal{B} be a basis for a finite-dimensional inner product space. Prove the following.
(a) If $\langle x, z\rangle=0$ for all $z \in \mathcal{B}$, then $x=0$.
(b) If $\langle x, z\rangle=\langle y, z\rangle$ for all $z \in \mathcal{B}$, then $x=y$.

Q12 [2]. Let $T: \mathcal{V} \rightarrow \mathcal{V}$ be a linear transformation on an inner product space \mathcal{V} with dimension n. Suppose $\|T x\|=\|x\|$ for all x. Prove that $\operatorname{dim}(\mathcal{R}(T))=n$.

Q13 [2]. Let \mathcal{V} be an inner product space and $\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$ be an orthonormal subset of \mathcal{V}. Show that for all $x \in \mathcal{V}$ we can write

$$
\|x\|^{2} \geq \sum_{i=1}^{m}\left|\left\langle x, v_{i}\right\rangle\right|^{2}
$$

Q14 [2]. Consider inner product space $\mathcal{V}=\{f \mid f:[0,1] \rightarrow \mathbb{R}, f$ continuous $\}$ with inner product $\langle f, g\rangle:=\int_{0}^{1} f(t) g(t) d t$. Find an orthonormal basis for the subspace of \mathcal{V} spanned by set $\{\sqrt{t}, t\}$.

References

[1] I. Lankham, B. Nachtergaele, and A. Schilling. Lecture Notes for MAT67. Fall 2007.
[2] Special thanks to J. Hernandez.

