- **Q1.** Let F be a field. For an arbitrary element $a \in F$ prove the following.
- (a) The additive inverse -a is unique.
- (b) For $a \neq 0$ the multiplicative inverse a^{-1} is unique.

Q2. Let $F = \mathbb{R}_{>0}$ (the set of strictly positive real numbers). We define addition and multiplication, respectively, as

$$\begin{array}{rcl} a \oplus b & := & ab \\ a \odot b & := & e^{\ln a \ln b} \end{array}$$

for $a, b \in F$.

- (a) Find the additive identity 0_F and the multiplicative identity 1_F .
- (b) Prove that F is a field.
- (c) Given $a \in F$, find -a and a^{-1} .
- **Q3.** Let (V, F) be a linear space. Given $a \in F$ and $v \in V$ prove the following.
- (a) $a0_V = 0_V$.
- (b) $-0_V = 0_V$.
- (c) $0_F v = 0_V$.
- (d) $(-1_F)x = -x$.
- (e) $av = 0_V$ implies either $a = 0_F$ or $v = 0_V$.
- (f) $a0_V = 0_V$.

Q4. Show that the set of all $m \times n$ real matrices $\mathbb{R}^{m \times n}$, with usual matrix addition and multiplication of a matrix by a real scalar, is a linear space over the field of real numbers \mathbb{R} .

Q5. Let P[0, 1] denote the set of all functions $f : [0, 1] \to \mathbb{R}$ that are piecewise continuous (i.e. discontinuous only at finitely many points with well-defined (finite) right and left limits where discontinuous). Show that P[0, 1] is a linear space.

Q6. Let $S = \{f \in C[0, 1] : f(\frac{1}{2}) = 0\}$ where C[0, 1] is the set of all continuous functions $f : [0, 1] \to \mathbb{R}$. Prove or disprove the claim that S is a subspace of C[0, 1].

Q7. Given linear space V, let Y and Z be subspaces of V. Prove the following.

- (a) The intersection $Y \cap Z$ is also a subspace of V.
- (b) That $Y \cup Z$ is a subspace implies either $Y \subset Z$ or $Z \subset Y$.

Q8. Consider the linear transformation $T : \mathbb{R}^{2 \times 2} \to \mathbb{R}^{2 \times 2}$ defined as

$$T\left(\left[\begin{array}{cc}a_{11} & a_{12}\\a_{21} & a_{22}\end{array}\right]\right) := \left[\begin{array}{cc}a_{11} + a_{12} & a_{21} + a_{22}\\a_{22} & a_{11} + a_{22}\end{array}\right]$$

(a) Find the matrix representation of this transformation with respect to the standard basis:

 $B = \left(\left[\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right], \left[\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array} \right], \left[\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array} \right], \left[\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array} \right] \right)$

(b) Find a basis for the null space $\mathcal{N}(T)$.

(c) Find a basis for the range space $\mathcal{R}(T)$.

Q9. Let $B = (v_1, v_2, \ldots, v_n)$ be an ordered basis for a finite dimensional linear space V. Show that for each $x \in V$, coordinates (a_1, a_2, \ldots, a_n) of x with respect to B (i.e., $x = a_1v_1 + a_2v_2 + \ldots + a_nv_n$) are unique.

Q10. Let V be the linear space of 2×2 real matrices

$$A = \left[\begin{array}{cc} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array} \right]$$

- (a) Let $S_1 = \{A \in V : a_{11} + a_{21} = a_{22}\}$. Is S_1 a subspace of V? If so, find a basis for S_1 .
- (b) Repeat part (a) for $S_2 = \{A \in V : a_{12} = 1 + a_{11}\}.$
- (c) Find a basis for V that contains

$$v_1 = \left[\begin{array}{cc} -1 & 0 \\ 2 & 0 \end{array} \right]$$

as an element.

Q11. Consider the set of polynomials $W = \text{Sp}\{p_1, p_2, p_3, p_4, p_5\}$ where $p_1(t) = 1 + t$, $p_2(t) = 2 + t^2$, $p_3(t) = t^4$, $p_4(t) = 1 - t + t^2$, and $p_5(t) = 1 - t + t^2 + 2t^4$. Find a basis for W.

Q12. Let $T: V \to W$ be a linear transformation, where V is the set of all 2×2 real matrices and W is the set of all polynomials with degree no greater than two, defined as

$$T\left(\left[\begin{array}{cc}a_{11} & a_{12}\\a_{21} & a_{22}\end{array}\right]\right) := a_{11} + a_{12}t + (a_{21} + a_{22})t^2.$$

Let

$$B = \left(\left[\begin{array}{cc} 1 & 1 \\ 0 & 0 \end{array} \right], \left[\begin{array}{cc} 1 & 0 \\ 1 & 0 \end{array} \right], \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right], \left[\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right] \right)$$

and

$$C = (1, t, t^2)$$

be bases for V and W, respectively.

- (a) Find the matrix representation of T with respect to the given bases.
- (b) Replace basis C with $\widehat{C} = (1, 1+t, 1+t+t^2)$ and find the new matrix representation of T.

Q13. Let *P* be the set of all polynomials with real coefficients and with degree no greater than n-1. Let *L* be the set of all linear functions of the form $\ell: P \to \mathbb{R}$. It is a fact that *L* is an *n*-dimensional linear space.

(a) Given $t_1 \in \mathbb{R}$ let $\ell_1 : P \to \mathbb{R}$ be defined as $\ell_1(p) = p(t_1)$. Show that $\ell_1 \in L$.

(b) Take n = 3. Prove the following claim. Given three distinct real numbers t_1 , t_2 , t_3 we can always find three real numbers a_1 , a_2 , a_3 such that

$$\int_0^1 p(t)dt = a_1 p(t_1) + a_2 p(t_2) + a_3 p(t_3)$$

for all $p \in P$.