Q1. Let F be a field. For an arbitrary element $a \in F$ prove the following.
(a) The additive inverse $-a$ is unique.
(b) For $a \neq 0$ the multiplicative inverse a^{-1} is unique.

Q2. Let $F=\mathbb{R}_{>0}$ (the set of strictly positive real numbers). We define addition and multiplication, respectively, as

$$
\begin{aligned}
a \oplus b & :=a b \\
a \odot b & :=e^{\ln a \ln b}
\end{aligned}
$$

for $a, b \in F$.
(a) Find the additive identity 0_{F} and the multiplicative identity 1_{F}.
(b) Prove that F is a field.
(c) Given $a \in F$, find $-a$ and a^{-1}.

Q3. Let (V, F) be a linear space. Given $a \in F$ and $v \in V$ prove the following.
(a) $a 0_{V}=0_{V}$.
(b) $-0_{V}=0_{V}$.
(c) $0_{F} v=0_{V}$.
(d) $\left(-1_{F}\right) x=-x$.
(e) $a v=0_{V}$ implies either $a=0_{F}$ or $v=0_{V}$.
(f) $a 0_{V}=0_{V}$.

Q4. Show that the set of all $m \times n$ real matrices $\mathbb{R}^{m \times n}$, with usual matrix addition and multiplication of a matrix by a real scalar, is a linear space over the field of real numbers \mathbb{R}.

Q5. Let $P[0,1]$ denote the set of all functions $f:[0,1] \rightarrow \mathbb{R}$ that are piecewise continuous (i.e. discontinuous only at finitely many points with well-defined (finite) right and left limits where discontinuous). Show that $P[0,1]$ is a linear space.

Q6. Let $S=\left\{f \in C[0,1]: f\left(\frac{1}{2}\right)=0\right\}$ where $C[0,1]$ is the set of all continuous functions $f:[0,1] \rightarrow \mathbb{R}$. Prove or disprove the claim that S is a subspace of $C[0,1]$.

Q7. Given linear space V, let Y and Z be subspaces of V. Prove the following.
(a) The intersection $Y \cap Z$ is also a subspace of V.
(b) That $Y \cup Z$ is a subspace implies either $Y \subset Z$ or $Z \subset Y$.

Q8. Consider the linear transformation $T: \mathbb{R}^{2 \times 2} \rightarrow \mathbb{R}^{2 \times 2}$ defined as

$$
T\left(\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]\right):=\left[\begin{array}{cc}
a_{11}+a_{12} & a_{21}+a_{22} \\
a_{22} & a_{11}+a_{22}
\end{array}\right]
$$

(a) Find the matrix representation of this transformation with respect to the standard basis:

$$
B=\left(\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\right)
$$

(b) Find a basis for the null space $\mathcal{N}(T)$.
(c) Find a basis for the range space $\mathcal{R}(T)$.

Q9. Let $B=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ be an ordered basis for a finite dimensional linear space V. Show that for each $x \in V$, coordinates $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ of x with respect to B (i.e., $x=$ $\left.a_{1} v_{1}+a_{2} v_{2}+\ldots+a_{n} v_{n}\right)$ are unique.

Q10. Let V be the linear space of 2×2 real matrices

$$
A=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]
$$

(a) Let $S_{1}=\left\{A \in V: a_{11}+a_{21}=a_{22}\right\}$. Is S_{1} a subspace of V ? If so, find a basis for S_{1}.
(b) Repeat part (a) for $S_{2}=\left\{A \in V: a_{12}=1+a_{11}\right\}$.
(c) Find a basis for V that contains

$$
v_{1}=\left[\begin{array}{rr}
-1 & 0 \\
2 & 0
\end{array}\right]
$$

as an element.

Q11. Consider the set of polynomials $W=\operatorname{Sp}\left\{p_{1}, p_{2}, p_{3}, p_{4}, p_{5}\right\}$ where $p_{1}(t)=1+t, p_{2}(t)=$ $2+t^{2}, p_{3}(t)=t^{4}, p_{4}(t)=1-t+t^{2}$, and $p_{5}(t)=1-t+t^{2}+2 t^{4}$. Find a basis for W.

Q12. Let $T: V \rightarrow W$ be a linear transformation, where V is the set of all 2×2 real matrices and W is the set of all polynomials with degree no greater than two, defined as

$$
T\left(\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]\right):=a_{11}+a_{12} t+\left(a_{21}+a_{22}\right) t^{2}
$$

Let

$$
B=\left(\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right],\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right],\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\right)
$$

and

$$
C=\left(1, t, t^{2}\right)
$$

be bases for V and W, respectively.
(a) Find the matrix representation of T with respect to the given bases.
(b) Replace basis C with $\widehat{C}=\left(1,1+t, 1+t+t^{2}\right)$ and find the new matrix representation of T.

Q13. Let P be the set of all polynomials with real coefficients and with degree no greater than $n-1$. Let L be the set of all linear functions of the form $\ell: P \rightarrow \mathbb{R}$. It is a fact that L is an n-dimensional linear space.
(a) Given $t_{1} \in \mathbb{R}$ let $\ell_{1}: P \rightarrow \mathbb{R}$ be defined as $\ell_{1}(p)=p\left(t_{1}\right)$. Show that $\ell_{1} \in L$.
(b) Take $n=3$. Prove the following claim. Given three distinct real numbers t_{1}, t_{2}, t_{3} we can always find three real numbers a_{1}, a_{2}, a_{3} such that

$$
\int_{0}^{1} p(t) d t=a_{1} p\left(t_{1}\right)+a_{2} p\left(t_{2}\right)+a_{3} p\left(t_{3}\right)
$$

for all $p \in P$.

