EE 501 (SUPPLEMENTARY NOTES)

COMPUTATION OF THE $R(A)$ AND $N(A)$
Our aim is to determine basis sets for $R(A)$ and $N(A)$, where A is an $m \times n$ real matrix. The analysis is similar in the complex case.

Elementary Column Operations (e.c.o.)

Let A be an $m \times n$ matrix. The three elementary column operations are:
i. Multiplication of a column by a nonzero real number.
ii. Adding the product of column j by a real number to column i, where $i \neq j$.
iii. Interchanging two columns.

Theorem: If B is obtained from A by a sequence of e.c.o., then A can be obtained from B by a sequence of e.c.o.

Proof: It is sufficient to show this for each of the three e.c.o. Let $A=\left[\begin{array}{lll}a_{1} & a_{2} & \ldots\end{array} a_{n}\right]$, where $a_{i} \in R^{m}$ are columns of A.
i. Let c be a nonzero real number. Multiply a_{i} by c. Now, $c a_{i}$ is the i-th column of $B . A$ can be obtained from B by multiplying the i-th column by $c^{-1}=1 / c$.
ii. Multiply the j-th column of A by c and add it to column i. Now, $a_{i}+c a_{j}$ is the i-th column of B. To obtain A back, subtract the product of the j-th column of B (i.e. a_{j}) by c, from i-th column of B.
iii. If columns a_{i} and a_{j} are interchanged to obtain B, interchange the same two columns to obtain A back.

Theorem: Any of the three e.c.o. defined above corresponds to multiplying A from right by an $n \times n$ nonsingular matrix E where E is obtained by performing the corresponding e.c.o. on the unit matrix I_{n}.

Proof: Exercise.
Examples:

$$
\begin{aligned}
& {\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right] \rightarrow\left[\begin{array}{ll}
a_{11} & a_{12} \\
c a_{21} & a_{22}
\end{array}\right] \rightarrow\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]\left[\begin{array}{ll}
c & 0 \\
0 & 1
\end{array}\right] \text { (First e.c.o.) }} \\
& {\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right] \rightarrow\left[\begin{array}{ll}
l_{12} & a_{11} \\
a_{22} & a_{21}
\end{array}\right] \rightarrow\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \text { (Third e.c.o.) }}
\end{aligned}
$$

$\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right] \rightarrow\left[\begin{array}{ll}a_{11} & a_{12}+c a_{11} \\ a_{21} & a_{22}+c a_{21}\end{array}\right] \rightarrow\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]\left[\begin{array}{ll}1 & c \\ 0 & 1\end{array}\right]$ (Second e.c.o.)
We therefore see that if B is obtained from A by a sequence of e.c.o., then $B=A E_{1} E_{2} \ldots E_{k}=A K$ where $K=E_{1} E_{2} \ldots E_{k}$ and $\operatorname{det} K \neq 0 . E_{i}$ is obtained by performing the i-th e.c.o. on I_{n}. Clearly, E_{i}^{-1} corresponds to an e.c.o. performed on I_{n} as well.

Definition: If B is obtained from A by a sequence of e.c.o., then B is said to be column equivalent to A.

Theorem: If B is column equivalent to A, then $R(B)=R(A)$.
Proof: Let $y \in R(A)$. Then, there exists an $x \in R^{n}$ such that $A x=y$. Since $A=B K^{-1}$, $y=B K^{-1} x$. Let $\tilde{x}=K^{-1} x$. So, $y=B \tilde{x}$, which means that $y \in R(B)$. So $R(A) \subset R(B)$. Now, let $y^{\prime} \in R(B)$. Then, there exists an $x^{\prime} \in R^{n}$ such that $B x^{\prime}=y . B=A K$ and let $\tilde{x}^{\prime}=K x^{\prime}$. Then, $y^{\prime} \in R(A)$. So, $R(B) \subset R(A)$.

Remark: By using the theorem given above, we can simplify a matrix A by e.c.o. and obtain a matrix B which is column equivalent to A. Then we can find a basis for $R(B)$, which also turns out to be a basis for $R(A)$.

The Algorithm to find a basis for $R(A)$:

1. Set $i=1$.
2. Find the smallest k such that

$$
\begin{aligned}
& a_{i k} \neq 0 \\
& a_{l k}=0 \text { for all } l<i
\end{aligned}
$$

If such a k does not exist, go to step 4.
3. For all $j>k$ such that

$$
\begin{aligned}
& a_{i j} \neq 0 \\
& \text { and } a_{l j}=0 \quad \text { for all } l<i
\end{aligned}
$$

multiply column k by $-a_{i j} / a_{i k}$ and add to column j.
4. If $i=m$, stop. Otherwise, let $i \rightarrow i+1$ and go to step 2 .

As a result of this algorithm, the matrix A is transformed into \bar{A} by e.c.o. where each column of A is either zero or if k_{i} is the first non-zero entry (counting from the top) of column i, then $k_{i} \neq k_{j}$ when $i \neq j$.

The matrix \bar{A} looks like
$\bar{A}=\left[\begin{array}{ccccc}0 & 0 & 0 & \ldots & 0 \\ x & 0 & 0 & \ldots & 0 \\ \vdots & x & 0 & \ldots & 0 \\ \vdots & \vdots & \vdots & \ldots & x \\ \vdots & \vdots & 0 & \ldots & \vdots\end{array}\right]$
By reordering columns of \bar{A}, we can have:
$1 \leq k_{1}<k_{2}<\ldots<k_{r} \leq n$
where r is the number of non-zero columns of \bar{A}. Then $\left\{\bar{a}_{1}, \ldots \bar{a}_{r}\right\}$ constitute a basis for $R(\bar{A})=R(A)$. Prove this last statement as exercise.

Example:

$A=\left[\begin{array}{ccccc}1 & -1 & 2 & 1 & 3 \\ -1 & 1 & -2 & -1 & -3 \\ 2 & -1 & 4 & 4 & 7 \\ 1 & -2 & 6 & 5 & 7\end{array}\right] \rightarrow\left[\begin{array}{ccccc}1 & 0 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 & 0 \\ 2 & 1 & 0 & 2 & 1 \\ 1 & -1 & 4 & 4 & 4\end{array}\right] \rightarrow\left[\begin{array}{ccccc}1 & 0 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 & 0 \\ 1 & -1 & 4 & 6 & 5\end{array}\right] \rightarrow\left[\begin{array}{ccccc}1 & 0 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 & 0 \\ 1 & -1 & 4 & 0 & 0\end{array}\right]=\bar{A}$
So, $\left\{\left[\begin{array}{c}1 \\ -1 \\ 2 \\ 1\end{array}\right],\left[\begin{array}{c}0 \\ 0 \\ 1 \\ -1\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 4\end{array}\right]\right\}$ is a basis for $R(\bar{A})=R(A)$.

Elementary Row Operations (e.r.o.)

The three elementary row operations are:
i. Multiplication of a row by a nonzero real number.
ii. Adding the product of row j by a real number to row i, where $i \neq j$.
iii. Interchanging two rows.

Theorem: If B is obtained from A by a sequence of e.r.o., then A can be obtained from B by a sequence of e.r.o.
Proof: Exercise
Theorem: Let B be obtained from A by a sequence of e.r.o., then $B=K A$ where $K=E_{k} E_{k-1} \ldots E_{1}$ is a non-singular $m \times m$ matrix and each E_{i} is obtained by performing the i-th e.r.o. on the $m \times m$ identity matrix I_{m}.
Proof: Exercise.

Definition: If B is obtained from A by a sequence of e.r.o., then B is said to be row equivalent to A.

Theorem: If B is row equivalent to A, then $N(B)=N(A)$.
Proof:
Let $x \in N(A)$. Then, $A x=0$, and $K A x=B x=0$. Hence $x \in N(B)$.
Next, let $x \in N(B)$. Then, $B x=0$, and $K^{-1} B x=A x=0$. So, $x \in N(A)$.

The Algorithm to find a Basis for $N(A)$

I. First phase (e.r.o.)

1. Set $i=1$.
2. Find the smallest k such that

$$
\begin{aligned}
& a_{k i} \neq 0 \\
& a_{k j}=0 \quad \text { for all } j<i
\end{aligned}
$$

If such a k does not exist, go to step 4.
5. For all $j \neq k$ such that $a_{j i} \neq 0$, multiply row k by $-a_{j i} / a_{k i}$ and add to row j.
6. If $i=n$, stop. Otherwise, let $i \rightarrow i+1$ and go to step 2 .

Note that this portion of the algorithm resembles the algorithm for finding a basis for $R(A)$. At this point, the rows are either all zeros or in the form
$\begin{array}{llllllll}0 & 0 & \ldots & 0 & x & x & \ldots & x\end{array}$

II. Second phase (Reordering the rows)

1. Interchange the rows so that all the zero rows lie below the nonzero rows. Define integers $k_{1}, k_{2}, \ldots, k_{r}$ as follows: k_{i} is the location of the first non-zero entry of the i-th row.
2. The rows are ordered such that $k_{1}<k_{2}<\ldots<k_{r}$

The resulting matrix \bar{A} (which is row equivalent to A) has the following properties:
i. Rows $r+1, r+2, \ldots, m$ have only zero elements.
ii. All elements to the left of $\left(i, k_{i}\right)$ are zero for all $i=1,2, \ldots, r$.
iii. All elements above $\left(i, k_{i}\right)$ are zero for all $i=1,2, \ldots, r$.

Define the index set $K=\left\{k_{1}, k_{2}, \ldots k_{r}\right\}$, where $1 \leq k_{1}<k_{2}<\ldots<k_{r} \leq n$.
Define also the index set $L=\{1,2, \ldots n\}-K$ as $L=\left\{l_{1}, l_{2}, \ldots l_{n-r}\right\}$
So, L is the set of integers from 1 to n which are not in K. Order l_{i} 's such that $1 \leq l_{1}<l_{2}<\ldots<l_{n-r} \leq n$. In other words $K \cup L=\{1,2, \ldots n\}$.

III. The basis for $N(A)$

Solve the system of equations $\bar{A} x=0 n-r$ times, each time by setting successively all components of x with indices in L equal to zero except one component which is set equal to one. Then, solve for the components of x with indices in K.
Let $x_{l_{i}}$ be the solution obtained when the l_{i}-th component is set equal to 1 and other l_{j} 's are set to 0 , i.e.
$x_{l_{i}}=\left[\begin{array}{c}u_{1, l_{i}} \\ u_{2, l_{i}} \\ \vdots \\ u_{n, l_{i}}\end{array}\right]$, where $u_{l_{i}, l_{i}}=1$ and $u_{l_{j}, l_{i}}=0$ for $i \neq j$.
and $u_{k_{j}, l_{i}}$'s are obtained from $A x_{l_{i}}=0$. In this way, $n-r$ solutions $\left\{x_{l_{1}}, x_{l_{2}}, \ldots x_{l_{n-r}}\right\}$ are obtained. This set is a basis for $N(\bar{A})=N(A)$.

Example:
$A=\left[\begin{array}{cccc}1 & -1 & 1 & -1 \\ 2 & 0 & 1 & -4 \\ -1 & 5 & -3 & -3 \\ 3 & 7 & -2 & -13\end{array}\right] \rightarrow\left[\begin{array}{cccc}1 & -1 & 1 & -1 \\ 0 & 2 & -1 & -2 \\ 0 & 4 & -2 & -4 \\ 0 & 10 & -5 & -10\end{array}\right] \rightarrow\left[\begin{array}{cccc}1 & -1 & 1 & -1 \\ 0 & 2 & -1 & -2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right] \rightarrow\left[\begin{array}{cccc}1 & 0 & 1 / 2 & -2 \\ 0 & 2 & -1 & -2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]=\bar{A}$
$k_{1}=1, k_{2}=2$ and $l_{1}=3, l_{2}=4$
$x_{l_{1}}=x_{3}=\left[\begin{array}{c}u_{1, l_{1}} \\ u_{2, l_{1}} \\ 1 \\ 0\end{array}\right] \quad A x_{l_{1}}=0 \quad x_{3}=\left[\begin{array}{c}-1 / 2 \\ 1 / 2 \\ 1 \\ 0\end{array}\right]$
$x_{l_{2}}=x_{4}=\left[\begin{array}{c}u_{1, l_{2}} \\ u_{2, l_{2}} \\ 0 \\ 1\end{array}\right] \quad A x_{l_{2}}=0 \quad x_{4}=\left[\begin{array}{l}2 \\ 1 \\ 0 \\ 1\end{array}\right]$
$\left\{\left[\begin{array}{c}-1 / 2 \\ 1 / 2 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}2 \\ 1 \\ 0 \\ 1\end{array}\right]\right\}$ is a basis for $N(\bar{A})=N(A)$

