EE 501 (SUPPLEMENTARY NOTES)

COMPUTATION OF THE R(A) **AND** N(A)

Our aim is to determine basis sets for R(A) and N(A), where A is an $m \times n$ real matrix. The analysis is similar in the complex case.

Elementary Column Operations (e.c.o.)

Let A be an $m \times n$ matrix. The three elementary column operations are:

- i. Multiplication of a column by a <u>nonzero</u> real number.
- ii. Adding the product of column j by a real number to column i, where $i \neq j$.
- iii. Interchanging two columns.

Theorem: If B is obtained from A by a sequence of e.c.o., then A can be obtained from B by a sequence of e.c.o.

Proof: It is sufficient to show this for each of the three e.c.o. Let $A = [a_1 \ a_2 \ \dots \ a_n]$, where $a_i \in \mathbb{R}^m$ are columns of A.

- i. Let *c* be a nonzero real number. Multiply a_i by *c*. Now, ca_i is the *i*-th column of *B*. *A* can be obtained from *B* by multiplying the *i*-th column by $c^{-1} = 1/c$.
- ii. Multiply the *j*-th column of *A* by *c* and add it to column *i*. Now, $a_i + ca_j$ is the *i*-th column of *B*. To obtain *A* back, subtract the product of the *j*-th column of *B* (i.e. a_i) by *c*, from *i*-th column of *B*.
- iii. If columns a_i and a_j are interchanged to obtain B, interchange the same two columns to obtain A back.

Theorem: Any of the three e.c.o. defined above corresponds to multiplying A from right by an $n \times n$ nonsingular matrix E where E is obtained by performing the corresponding e.c.o. on the unit matrix I_n .

Proof: Exercise.

Examples:

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \rightarrow \begin{bmatrix} ca_{11} & a_{12} \\ ca_{21} & a_{22} \end{bmatrix} \rightarrow \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} c & 0 \\ 0 & 1 \end{bmatrix}$$
(First e.c.o.)
$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \rightarrow \begin{bmatrix} a_{12} & a_{11} \\ a_{22} & a_{21} \end{bmatrix} \rightarrow \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
(Third e.c.o.)

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \rightarrow \begin{bmatrix} a_{11} & a_{12} + ca_{11} \\ a_{21} & a_{22} + ca_{21} \end{bmatrix} \rightarrow \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} 1 & c \\ 0 & 1 \end{bmatrix}$$
(Second e.c.o.)

We therefore see that if *B* is obtained from *A* by a sequence of e.c.o., then $B = AE_1E_2...E_k = AK$ where $K = E_1E_2...E_k$ and det $K \neq 0$. E_i is obtained by performing the *i*-th e.c.o. on I_n . Clearly, E_i^{-1} corresponds to an e.c.o. performed on I_n as well.

Definition: If B is obtained from A by a sequence of e.c.o., then B is said to be column equivalent to A.

Theorem: If *B* is column equivalent to *A*, then R(B) = R(A). *Proof:* Let $y \in R(A)$. Then, there exists an $x \in R^n$ such that Ax = y. Since $A = BK^{-1}$, $y = BK^{-1}x$. Let $\tilde{x} = K^{-1}x$. So, $y = B\tilde{x}$, which means that $y \in R(B)$. So $R(A) \subset R(B)$. Now, let $y' \in R(B)$. Then, there exists an $x' \in R^n$ such that Bx' = y. B = AK and let $\tilde{x}' = Kx'$. Then, $y' \in R(A)$. So, $R(B) \subset R(A)$.

Remark: By using the theorem given above, we can simplify a matrix A by e.c.o. and obtain a matrix B which is column equivalent to A. Then we can find a basis for R(B), which also turns out to be a basis for R(A).

The Algorithm to find a basis for R(A):

1. Set
$$i = 1$$
.

2. Find the smallest
$$k$$
 such that

$$a_{ik} \neq 0$$

 $a_{lk} = 0$ for all $l < i$

If such a *k* does not exist, go to step 4.

3. For all j > k such that

$$a_{ij} \neq 0$$

and $a_{lj} = 0$ for all $l < i$

multiply column k by $-a_{ii}/a_{ik}$ and add to column j.

4. If i = m, stop. Otherwise, let $i \rightarrow i+1$ and go to step 2.

As a result of this algorithm, the matrix A is transformed into \overline{A} by e.c.o. where each column of A is either zero or if k_i is the first non-zero entry (counting from the top) of column i, then $k_i \neq k_j$ when $i \neq j$.

The matrix \overline{A} looks like

$$\overline{A} = \begin{bmatrix} 0 & 0 & 0 & \dots & 0 \\ x & 0 & 0 & \dots & 0 \\ \vdots & x & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \dots & x \\ \vdots & \vdots & 0 & \dots & \vdots \end{bmatrix}$$

By reordering columns of \overline{A} , we can have:

 $1 \le k_1 < k_2 < \ldots < k_r \le n$

where *r* is the number of non-zero columns of \overline{A} . Then $\{\overline{a}_1, \dots, \overline{a}_r\}$ constitute a basis for $R(\overline{A}) = R(A)$. Prove this last statement as exercise.

Example:

$$A = \begin{bmatrix} 1 & -1 & 2 & 1 & 3 \\ -1 & 1 & -2 & -1 & -3 \\ 2 & -1 & 4 & 4 & 7 \\ 1 & -2 & 6 & 5 & 7 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 & 0 \\ 2 & 1 & 0 & 2 & 1 \\ 1 & -1 & 4 & 4 & 4 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 & 0 \\ 1 & -1 & 4 & 6 & 5 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 & 0 \\ 1 & -1 & 4 & 0 & 0 \end{bmatrix} = \overline{A}$$

So,
$$\left\{ \begin{bmatrix} 1 \\ -1 \\ 2 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \\ -1 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \\ 4 \end{bmatrix} \right\}$$
 is a basis for $R(\overline{A}) = R(A)$.

Elementary Row Operations (e.r.o.)

The three elementary row operations are:

- i. Multiplication of a row by a <u>nonzero</u> real number.
- ii. Adding the product of row j by a real number to row i, where $i \neq j$.
- iii. Interchanging two rows.

Theorem: If B is obtained from A by a sequence of e.r.o., then A can be obtained from B by a sequence of e.r.o. **Proof:** Exercise

Theorem: Let *B* be obtained from *A* by a sequence of e.r.o., then B = KA where $K = E_k E_{k-1} \dots E_1$ is a non-singular $m \times m$ matrix and each E_i is obtained by performing the *i*-th e.r.o. on the $m \times m$ identity matrix I_m . **Proof:** Exercise. **Definition:** If B is obtained from A by a sequence of e.r.o., then B is said to be row equivalent to A.

Theorem: If B is row equivalent to A, then N(B) = N(A). **Proof:** Let $x \in N(A)$. Then, Ax = 0, and KAx = Bx = 0. Hence $x \in N(B)$. Next, let $x \in N(B)$. Then, Bx = 0, and $K^{-1}Bx = Ax = 0$. So, $x \in N(A)$.

The Algorithm to find a Basis for N(A)

I. First phase (e.r.o.)

- 1. Set i = 1.
- 2. Find the smallest k such that

$$i_{ki} \neq 0$$

$$a_{ki} = 0$$
 for all $j < i$

If such a k does not exist, go to step 4.

- 5. For all $j \neq k$ such that $a_{ji} \neq 0$, multiply row k by $-a_{ji}/a_{ki}$ and add to row j.
- 6. If i = n, stop. Otherwise, let $i \rightarrow i+1$ and go to step 2.

Note that this portion of the algorithm resembles the algorithm for finding a basis for R(A). At this point, the rows are either all zeros or in the form

 $0 \ 0 \ \dots \ 0 \ x \ x \ \dots \ x$

II. Second phase (Reordering the rows)

- 1. Interchange the rows so that all the zero rows lie below the nonzero rows. Define integers $k_1, k_2, ..., k_r$ as follows: k_i is the location of the first non-zero entry of the *i*-th row.
- 2. The rows are ordered such that $k_1 < k_2 < \ldots < k_r$

The resulting matrix \overline{A} (which is row equivalent to A) has the following properties:

- i. Rows r+1, r+2, ..., m have only zero elements.
- ii. All elements to the left of (i, k_i) are zero for all i = 1, 2, ..., r.

iii. All elements above (i,k_i) are zero for all i = 1,2,...,r.

Define the index set $K = \{k_1, k_2, \dots, k_r\}$, where $1 \le k_1 < k_2 < \dots < k_r \le n$.

Define also the index set $L = \{1, 2, \dots, n\} - K$ as $L = \{l_1, l_2, \dots, l_{n-r}\}$

So, *L* is the set of integers from 1 to *n* which are not in *K*. Order l_i 's such that $1 \le l_1 < l_2 < \ldots < l_{n-r} \le n$. In other words $K \bigcup L = \{1, 2, \ldots n\}$.

III. The basis for N(A)

Solve the system of equations $\overline{A}x = 0$ n-r times, each time by setting successively all components of x with indices in L equal to zero except one component which is set equal to one. Then, solve for the components of x with indices in K.

Let x_{l_i} be the solution obtained when the l_i -th component is set equal to 1 and other l_j 's are set to 0, i.e.

$$x_{l_i} = \begin{bmatrix} u_{1,l_i} \\ u_{2,l_i} \\ \vdots \\ u_{n,l_i} \end{bmatrix}, \text{ where } u_{l_i,l_i} = 1 \text{ and } u_{l_j,l_i} = 0 \text{ for } i \neq j.$$

and u_{k_j,l_i} 's are obtained from $Ax_{l_i} = 0$. In this way, n - r solutions $\{x_{l_1}, x_{l_2}, \dots, x_{l_{n-r}}\}$ are obtained. This set is a basis for $N(\overline{A}) = N(A)$.

Example:

$$A = \begin{bmatrix} 1 & -1 & 1 & -1 \\ 2 & 0 & 1 & -4 \\ -1 & 5 & -3 & -3 \\ 3 & 7 & -2 & -13 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 & 1 & -1 \\ 0 & 2 & -1 & -2 \\ 0 & 4 & -2 & -4 \\ 0 & 10 & -5 & -10 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 & 1 & -1 \\ 0 & 2 & -1 & -2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & \frac{1}{2} & -2 \\ 0 & 2 & -1 & -2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} = \overline{A}$$

$$k_1 = 1, k_2 = 2$$
 and $l_1 = 3, l_2 = 4$

$$x_{l_{1}} = x_{3} = \begin{bmatrix} u_{1,l_{1}} \\ u_{2,l_{1}} \\ 1 \\ 0 \end{bmatrix} \qquad Ax_{l_{1}} = 0 \qquad x_{3} = \begin{bmatrix} -\frac{1}{2} \\ \frac{1}{2} \\ 1 \\ 0 \end{bmatrix}$$
$$x_{l_{2}} = x_{4} = \begin{bmatrix} u_{1,l_{2}} \\ u_{2,l_{2}} \\ 0 \\ 1 \end{bmatrix} \qquad Ax_{l_{2}} = 0 \qquad x_{4} = \begin{bmatrix} 2 \\ 1 \\ 0 \\ 1 \end{bmatrix}$$
$$\left\{ \begin{bmatrix} -\frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \\ 0 \\ 1 \end{bmatrix} \right\} \text{ is a basis for } N(\overline{A}) = N(A)$$