EE 501 Linear Systems Theory

Emre Özkan
emreo@metu.edu.tr
Department of Electrical and Electronics Engineering
Middle East Technical University
Ankara, Turkey

November 8, 2016

Field

Definition

A field is a set F, together with two mappings of $F \times F \rightarrow F$, called addition and multiplication, written as $(a, b) \rightarrow a+b$ and $(a, b) \rightarrow a b$ respectively with the following properties:

Addition:

- (A1) $a+b=b+a$ for all $a, b \in F$ (commutativity)
- (A2) $a+(b+c)=(a+b)+c$ for all $a, b, c \in F$ (associativity)
- (A3) There is an element in F, denoted by 0_{F}, such that $a+0_{F}=a$ $\forall a \in F$ (additive identity)
■ (A4) For each $a \in F$ there is an element in F, denoted by $-a$, such that $a+(-a)=0_{F}$ (additive inverse)

Field continued..

Multiplication:

- (M1) $a b=b a$ for all $a, b \in F$ (commutativity)
- (M2) $a(b c)=(a b) c$ for all $a, b, c \in F$ (associativity)
- (M3) There is an element in F, denoted by 1_{F}, such that $a 1_{F}=a$ $\forall a \in F$ (multiplicative identity)
- (M4) For each $a \neq 0_{F}$ there is an element in F, denoted by a^{-1}, such that $a a^{-1}=1_{F}$ (multiplicative inverse)
(D1) $a(b+c)=a b+a c \quad \forall a, b, c$ (distributive law).

Field continued..

Example

Set of real numbers \mathbb{R} with standard addition and multiplication.

Example

Set of binary numbers with modulo 2 addition and multiplication.
$F=\{0,1\}$

+	0	1
0	0	1
1	1	0

\cdot	0	1
0	0	0
1	0	1

Field continued..

Example

Let $F=\mathbb{R} \times \mathbb{R}$. Let us define + and \cdot as:
$x+y:=\left(x_{1}+y_{1}, x_{2}+y_{2}\right)$,
$x \cdot y:=\left(x_{1} y_{1}-x_{2} y_{2}, x_{1} y_{2}+x_{2} y_{1}\right)$,
where $x=\left(x_{1}, x_{2}\right) \in F, y=\left(y_{1}, y_{2}\right) \in F$.
Note that this is nothing but complex number field \mathbb{C}. Then $0_{F}=(0,0)$ and $1_{F}=(1,0)$.

Exercise

Let $F=(0, \infty)=\mathbb{R}_{+}$(positive real numbers) Given $x+y:=x y$, $x \cdot y:=e^{\ln (x) \ln (y)}$, show that F satisfies the axioms of field. Find 1_{F} and 0_{F}.

Question
Are polynomials a field? Are matrices a field?

Linear Spaces

Definition

A linear space V is a set, whose elements are called vectors associated with a field F, whose elements are called scalars. Vectors can be added and they can be multiplied by scalars. These operations satisfy the following properties:

Vector addition: $\quad x+y, \quad+: V \times V \rightarrow V$
(A1) $x+y=y+x \quad \forall x, y \in V$ (commutativity)
(A2) $x+(y+z)=(x+y)+z \quad \forall x, y, z \in V$ (associativity)
(A3) $x+0=x \quad \forall x \in V$ (additive identity)
(A4) $x+(-x)=0 \quad \forall x \in V$ (additive inverse)

Linear Spaces

Scalar multiplication: $\quad a x, \quad \cdot: F \times V \rightarrow V$
(M1) $a(b x)=(a b) x$ for all $a, b \in F, x \in V$ (associativity)
(M2) $a(x+y)=a x+a y$ for all $a \in F, x, y \in V$ (distributive)
(M3) $(a+b) x=a x+b x$ for all $a, b \in F, x \in V$ (distributive)
(M4) $1 x=x$ (unit rule)
Example
Show that $0 x=0$

Linear Spaces

Example

Set of all vectors $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ with $a_{i} \in F$. Addition, multiplication are defined componentwise. This space is denoted as F^{n}. Let $x, y \in F^{n}$
$x=\left(a_{1}, a_{2}, \ldots, a_{n}\right), y=\left(b_{1}, b_{2}, \ldots, b_{n}\right)$
Addition: $x+y:=\left(a_{1}+b_{1}, a_{2}+b_{2}, \ldots, a_{n}+b_{n}\right)$
Multiplication: $c x:=\left(c a_{1}, c a_{2}, \ldots, c a_{n}\right)$
Most common examples are \mathbb{R}^{n} and \mathbb{C}^{n}.

Linear Spaces

Example

Set of all real valued functions $t \rightarrow f(t)$ defined on the real line $F=\mathbb{R}$.

Example

Set of all polynomials with degree n with coefficients in F.

Example

Set of all polynomials with degree less than n with coefficients in F. Note that this linear space is a subset of the previous one for $F=\mathbb{R}$.

Linear Spaces

Definition

Let V be a linear space defined over field F, denoted by (V, F). A subset W of V is called a subspace if sums and scalar multiples of elements of W belong to W. That is,
(S1) $w_{1}+w_{2} \in W \quad \forall w_{1}, w_{2} \in W$
(S2) $a w \in W \quad \forall w \in W$ and $\forall a \in F$

Remark
Subset has to be closed under addition and scalar multiplication. All other properties are inherited from the original linear space.

Linear Spaces

```
Example
linear space \(V=\mathbb{R}^{2}\);
subspace \(W=\left[\begin{array}{ll}a & 0\end{array}\right]^{T}: a \in \mathbb{R}\)
```

```
Example
linear space }V=\mp@subsup{\mathbb{R}}{}{2}\mathrm{ ;
subspace W=[a 1] T}:a\in\mathbb{R
```


Example

linear space $V=$ set of all real valued functions $t \rightarrow f(t)$;
subspace $W_{1}=$ set of all continuous functions, subspace $W_{2}=$ set of all functions periodic with π.

Linear Spaces

Remark

0 vector itself is a subspace and it is the smallest subspace.

Definition

The sum of two subsets Y and Z of a linear space X, denoted as $Y+Z$, is the set of all vectors of form $y+z, y \in Y, z \in Z$.

```
Example
Show that \(Y+Z\) is a linear subspace of \(X\) if \(Y\) and \(Z\) are
```


Linear Spaces

```
Example
Prove that if \(Y\) and \(Z\) are subspaces of linear space \(X\), so is their intersection \(Y \cap Z\).
```


Example
 If Y and Z are subspaces of linear space X, is their union $Y \cup Z$ a subspace?

Linear Spaces

Definition

Let (V, F) and (W, F) be two linear spaces defined over the same scalar field F. The product space of (V, F) and (W, F) is defined as

■ $V \times W=\{(v, w): v \in V, w \in W\}$
■ $(v, w)+(x, y):=(v+x, w+y)$ (vector addition)

- $a(v, w):=(a v, a w)$ (scalar multiplication)

Linear Spaces

Definition

A linear combination of n vectors $x_{1}, x_{2}, \ldots, x_{n}$ of a linear space C is a vector of the form $\quad a_{1} x_{1},+a_{2} x_{2}+, \ldots,+a_{n} x_{n}, \quad$ where a_{i} 's are scalars in F.

Definition

The set of all linear combinations of $x_{1}, x_{2}, \ldots, x_{n}$ is called the span of $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$; denoted by $\operatorname{sp}\left\{x_{1}, x_{2},, \ldots, x_{n}\right\}$.

Definition

Vectors $x_{1}, x_{2}, \ldots, x_{n}$ in X are said to be linearly independent if $a_{1} x_{1},+a_{2} x_{2}+, \ldots,+a_{n} x_{n},=0$ implies $a_{i}=0, \forall i$. Otherwise, they are linearly dependent.

Linear Spaces

Example

i) $\left\{\left[\begin{array}{l}0 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 0\end{array}\right]\right\}$
ii) $\left\{\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right],\left[\begin{array}{l}4 \\ 5 \\ 6\end{array}\right],\left[\begin{array}{l}7 \\ 8 \\ 9\end{array}\right]\right\}$

Example

Consider the linear space of polynomials with degree $n \leq 2$. Let subset $\mathrm{S}=\left\{P_{1}, P_{2}, P_{3}\right\}$ be such that $p_{1}(t)=1, p_{2}(t)=t, p_{3}(t)=t^{2}, \quad \forall t$ Is this set linearly independent?

Linear Spaces

Example

$\mathrm{S}=\{\cos (t), \sin (t), \cos (t-\pi / 3)\}$

Definition

Let V be a linear space and (finite) set of vectors $\mathrm{S}=\left\{x_{1}, \ldots, x_{n}\right\}$ be a subset of $V . \mathrm{S}$ is said to be a basis for V iff

- $\operatorname{Span}(S)=V$

■ S is a linearly independent set.

Definition

A (finite dimensional) linear space V has many bases. All these bases must have the same number of vectors. That number is called the dimension of V.

Linear Spaces

Example
i) $\left\{\left[\begin{array}{l}0 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 0\end{array}\right]\right\}, \quad$ ii) $\left\{\left[\begin{array}{l}1 \\ 1\end{array}\right],\left[\begin{array}{l}2 \\ 3\end{array}\right]\right\}$

Definition

Ordered basis is a basis $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, where basis vectors are given in a specific ordering.

If $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is an ordered basis of V and $y \in V$, then there is a unique n -tuple of scalars $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ such that $y=\sum_{i=1}^{n} a_{i} x_{i}$. Scalars $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ are called the components of y with respect to the ordered basis $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$.

Linear Spaces

Example

With respect to some ordered basis $B_{1}=\left(x_{1}, x_{2}\right)$ of \mathbb{R}^{2}, let the vectors y_{1}, y_{2}, y_{3} be presented by $\left[y_{1}\right]_{B}=\left[\begin{array}{l}1 \\ 1\end{array}\right],\left[y_{2}\right]_{B}=\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[y_{3}\right]_{B}=\left[\begin{array}{l}2 \\ 3\end{array}\right]$. That is, $y_{1}=1 x_{1}+1 x_{2}, y_{2}=1 x_{1}+0 x_{2}, y_{3}=2 x_{1}+3 x_{2}$. Let our new basis be $B_{2}=\left(y_{1}, y_{2}\right)$. Express y_{3} w.r.t. this new basis.

Remark: For a given ordered basis, the representation of a vector is unique.

Normed linear spaces

Definition

Consider a linear space V over F, where F is either \mathbb{R} or \mathbb{C}. Let there be a function $x \rightarrow\|x\|$ that assigns to each $x \in V$, a nonnegative real number $\|x\| \in \mathbb{R}>0$. Such function is called a norm if it satisfies the following properties.
(P1) $\left\|x_{1}+x_{2}\right\| \leq\left\|x_{1}\right\|+\left\|x_{2}\right\|$
(P2) $\|\alpha x\|=|\alpha|\|x\| \forall x \in V$ and $\alpha \in F$
(P3) $\|x\|=0 \Leftrightarrow x=0$

The expression "' $\|x\|$ "' is read " 'the norm of x "' and the function $\|$.$\| is$ said to be a norm on V.

The triplex $(V, F,\|\cdot\|)$ is called a normed space.

Normed linear spaces

Norms can quantify distance between two points in our linear space.

The distance between $x_{1}, x_{2} \in V$ is the norm of the vector $x_{1}-x_{2}$ or $x_{2}-x_{1}:\left\|\left(x_{1}-x_{2}\right)\right\|$.

The norm of $\mathrm{x},\|x\|$ is the distance of x to the origin 0 .

Now that we have a proper tool for measuring distance (norm), we can begin studying the "geometry" of the space (parallelism, orthogonality, area, volume, shape in general).

Normed linear spaces

Example

Let $V=\mathbb{R}^{2}, F=\mathbb{R}$,
i) $\|x\|_{1}:=\left|\alpha_{1}\right|+\left|\alpha_{2}\right|$. Is $\|\cdot\|_{1}$ a norm?
ii) $\|x\|_{2}:=\left(\alpha_{1}^{2}+\alpha_{2}^{2}\right)^{\frac{1}{2}}$. Is $\|\cdot\|_{2}$ a norm?
iii) $\|x\|_{\infty}:=\max \left(\left|\alpha_{1}\right|,\left|\alpha_{2}\right|\right)$. Is $\|\cdot\|_{\infty}$ a norm?

Normed linear spaces

All these norms can be generalized into what we call a 'p-norm'.

$$
\|x\|:=\left(\left|\alpha_{1}\right|^{p}+\left|\alpha_{2}\right|^{p}\right)^{\frac{1}{p}}
$$

Note that $\lim _{p \rightarrow \infty}\|x\|_{p}=\|x\|_{\infty}$.

Normed linear spaces

p-norm:

Normed linear spaces

Examples: On lecture notes...

Matrix Norms

Example
Let $V=\mathbb{R}^{n \times m}$, and $A=\left[a_{i j}\right]$,

$$
\|A\|=\max _{i, j}\left|a_{i j}\right| \text { is a norm. }
$$

Example
Let $V=\mathbb{R}^{n \times m}$, and $A=\left[a_{i j}\right]$,

$$
\|A\|=\max _{i} \sum_{j=1}^{n}\left|a_{i j}\right| \text { (abs sum of rows) }
$$

Exercise
Show that this is a norm.

Matrix Norms

Definition

$A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be an $m \times n$ matrix. Let $\|\cdot\|_{\mathbb{R}^{n}}$ and $\|\cdot\|_{\mathbb{R}^{m}}$ denote the norms (vector norms) in \mathbb{R}^{n} and \mathbb{R}^{m} respectively. The induced norm of a matrix is defined as

$$
\|A\|:=\max _{x \in \mathbb{R}^{n}, x \neq 0} \frac{\|A x\|_{\mathbb{R}^{m}}}{\|x\|_{\mathbb{R}^{n}}}
$$

Remark:

The induced matrix norm is defined in terms of vector norms. An equivalent definition is:

$$
\|A\|:=\max _{\|x\|=1}\|A x\|
$$

Matrix Norms

Remark:

$$
\begin{aligned}
\|A x\| & =\frac{\|A x\|}{\|x\|}\|x\|(\text { suppose }\|x\| \neq 0) \\
& \leq\left(\max _{y} \frac{\|A y\|}{\|y\|}\right)\|x\| \\
& =\|A\|\|x\| \Rightarrow\|A x\| \leq\|A\|\|x\|
\end{aligned}
$$

Furthermore, there exists a vector x^{*} such that $\left\|A x^{*}\right\|=\|A\|\left\|x^{*}\right\|$ which may not be unique.

Matrix Norms

Example

Choose $\|\cdot\|_{2}$ in \mathbb{R}^{n} and \mathbb{R}^{m},

$$
\|A\|=\max _{\|x\|=1}\|A x\|=\max _{\|x\|=1} \sqrt{(A x)^{T} A x}=\max _{\|x\|=1} \sqrt{x^{T} A^{T} A x}
$$

Convergence

Definition

Let $(V, F,\|\|$.$) be a normed space. Let \left\{v_{n}\right\}_{n=1}^{\infty}$ be a sequence of vectors in $V . v_{n} \in V n=1,2, \ldots$. The sequence is said to be convergent to the limit $\bar{v} \in V$ iff $\left\|v_{n}-\bar{v}\right\| \rightarrow 0$ as $n \rightarrow \infty$

Equivalently, given any $\epsilon>0, \exists N$ (N depends on ϵ) such that $n>N$ implies $\left\|v_{n}-\bar{v}\right\| \leq \epsilon$.

Remark:
A sequence that is not convergent is called divergent.

Convergence

Example
Given $V=\mathbb{R}$ and $\|v\|=|v|$, consider the sequence $\left\{\left(\frac{1}{2}\right)^{n}\right\}_{n=1}^{\infty}$.
The sequence is convergent to $v=0$.

Example
Consider the sequence $\left\{(-1)^{n}\right\}_{n=1}^{\infty}$

Convergence

In most engineering applications, we are interested in the convergence of an iterative algorithm.

In general, we do not know where!

The given definition of the convergence requires the limiting element $\bar{v} \in V$, an element we may not know, to verify convergence.

There are ways to exclude " $\bar{v}-$ dependence".

Cauchy sequence

Definition

Let $(V, F,\|\cdot\|)$ be a normed space. A sequence $\left\{v_{n}\right\}_{n=1}^{\infty}$ in V is said to be a Cauchy sequence if $\forall \epsilon>0, \exists N$ (depending on ϵ) such that $\left\|v_{n}-v_{m}\right\|<\epsilon$ for all $n, m>N$.

Remark:

Every convergent sequence is a Cauchy sequence. The converse, in general, is not true.

Example

Consider the normed space $(\mathbb{Q}, \mathbb{Q},||$.$) , (i.e., set of rational numbers over$ the field rational numbers with norm being the absolute value). Is the sequence $\left\{1+\sum_{i=1}^{n} \frac{1}{i!}\right\}_{n=1}^{\infty}$ convergent?

Banach Space

Definition

A normed space is said to be complete if every Cauchy sequence is convergent. A complete normed space is called a Banach Space.

Example

"'A normed space that is not complete"'
Let $V=\left\{f \mid f:[-1,1] \rightarrow \mathbb{R}, \mathrm{f}\right.$ is continuous and $\left.\int_{-1}^{1}|f(t)| d t<\infty\right\}$.
Define $\|f\|_{1}:=\int_{-1}^{1}|f(t)| d t$.
Now consider the sequence $\left\{f_{n}\right\}_{n=1}^{\infty}$ defined as follows:

Inner Product Space

An inner product space is a linear space with an additional structure called inner product.

Definition

Let V be a linear space over field F. An inner product is a map of the form $\langle\cdot, \cdot\rangle: V \times V \rightarrow F$ that satisfies the following three axioms for all vectors $x, y, z \in V$ and all scalars $\alpha \in F$.

1) $\langle x, y\rangle=\overline{\langle y, x\rangle}$ (conjugate symmetry)

2a) $\langle\alpha x, y\rangle=\alpha\langle x, y\rangle$ (linearity in the first argument)
2b) $\langle x+y, z\rangle=\langle x, z\rangle+\langle y, z\rangle$ (linearity in the first argument)
3) $\langle x, x\rangle \geq 0$ with equality only for $x=0$ (positive defineteness)

Inner Product Space

Notice that

$$
\langle x, y+z\rangle=\langle x, y\rangle+\langle x, z\rangle
$$

$$
\langle x, \alpha y\rangle=\bar{\alpha}\langle x, y\rangle
$$

Inner Product Space

> Example
> $V=\mathbb{C}^{n},\langle x, y\rangle=\sum_{i=1}^{n} x_{i} \overline{y_{i}}$

Example

Theorem
Cauchy-Schwarz inequality:

$$
|\langle x, y\rangle|^{2} \leq\langle x, x\rangle\langle y, y\rangle
$$

Summary

We have studied

- Sets
- Linear Spaces
- Normed Linear Spaces
- Inner Product Spaces

Sets

Very general concept. We can perform:

- Define subsets
- Take unions, intersections, complements, set subtraction

Summary

Linear Spaces

We defined members of our sets as vectors and defined
■ Vector addition
■ Scalar multiplication

We obtained an algebraic structure, where we can

- perform algebraic operations,
- define linear combinations,
- define span, basis, etc. Find representation of vectors wrt to basis,
- define linear transformations between vector spaces.

Summary

Normed Linear Spaces

We defined norms to incorporate a geometric structure on top of the algebraic structure. We can calculate the distance between two members of the vector space: $\|x-y\|$ In a normed space we can,

- Define (measure) distance
- Analyse convergence of sequences

Normed spaces have a major shortcoming. The direction cannot be characterized. The direction, or rather relative direction, can be studied by the help of a tool we call the inner product.

Summary

Inner Product Spaces
Enhancement of the geometric structure of a normed space

Example

Let u an v be two unit vectors in \mathbb{R}^{n}
■ $\langle u, v\rangle=0$ if they are orthogonal

- $\langle u, v\rangle$ is maximum when u and v point in the same direction
- $\langle u, v\rangle$ is minimum when u and v point in the opposite direction

Linear Transformation

Definition

Let V and W be linear spaces over the same field F. A linear transformation T is a mapping $T: V \rightarrow W$ satisfying
$T\left(a_{1} x_{1}+a_{2} x_{2}\right)=a_{1} T\left(x_{1}\right)+a_{2} T\left(x_{2}\right) \quad \forall a_{1}, a_{2} \in F \quad$ and $\quad \forall x_{1}, x_{2} \in V$

Example

■ $V=W$ polynomials of degree less than n in $S ; T=\frac{d}{d s}$
■ $V=W=\{$ continuous functions of type $f:[0,1] \rightarrow \mathbb{R}\}$;

$$
T_{f}=\int_{0}^{1} f(s) d s
$$

Range and Null Spaces

Definition

Given linear transformation $T: V \rightarrow W$, the null space of T is the set of all $x \in V$ satisfying $T x=0_{w}$. That is, $\mathcal{N}(T):=\{x \in V: T x=0\}$

Definition

Given linear transformation $T: V \rightarrow W$, the range space of T the set of all $w \in W$ satisfying $T v=W$. That is
$\mathcal{R}(T):=\{w \in W: w=T v \quad$ for some $\quad v \in V\}$

Range and Null Spaces

Remark
For a linear transformation $T: V \rightarrow W, \mathcal{N}(T)$ is a linear subspace of V .

Remark
$\mathcal{R}(T)$ is a subspace of W.

Linear Transformation

Definition
A function $f: X \rightarrow Y$ is one-to-one if $x_{1} \neq x_{2} \Rightarrow f\left(x_{1}\right) \neq f\left(x_{2}\right)$

Theorem
Let $T: V \rightarrow W$ be a linear transformation. Then mapping T is one-to-one if and only if $\mathcal{N}(T)=\{0\}$.

