

EE 501 Linear Systems Theory

Emre Özkan emreo@metu.edu.tr

Department of Electrical and Electronics Engineering Middle East Technical University Ankara, Turkey

November 8, 2016

A field is a set F, together with two mappings of $F \times F \to F$, called addition and multiplication, written as $(a, b) \to a + b$ and $(a, b) \to ab$ respectively with the following properties:

Addition:

- (A1) a + b = b + a for all $a, b \in F$ (commutativity)
- (A2) a + (b + c) = (a + b) + c for all $a, b, c \in F$ (associativity)
- (A3) There is an element in F, denoted by 0_F , such that $a + 0_F = a$ $\forall a \in F$ (additive identity)
- (A4) For each $a \in F$ there is an element in F, denoted by -a, such that $a + (-a) = 0_F$ (additive inverse)

Multiplication:

- (M1) ab = ba for all $a, b \in F$ (commutativity)
- (M2) a(bc) = (ab)c for all $a, b, c \in F$ (associativity)
- (M3) There is an element in F, denoted by 1_F , such that $a1_F = a$ $\forall a \in F$ (multiplicative identity)
- (M4) For each $a \neq 0_F$ there is an element in F, denoted by a^{-1} , such that $aa^{-1} = 1_F$ (multiplicative inverse)

(D1) $a(b+c) = ab + ac \quad \forall a, b, c \text{ (distributive law)}.$

Set of real numbers $\ensuremath{\mathbb{R}}$ with standard addition and multiplication.

Example

Set of binary numbers with modulo 2 addition and multiplication.

 $F=\{0,1\}$

Field continued..

Example

Let
$$F = \mathbb{R} \times \mathbb{R}$$
. Let us define $+$ and \cdot as:
 $x + y := (x_1 + y_1, x_2 + y_2),$
 $x \cdot y := (x_1y_1 - x_2y_2, x_1y_2 + x_2y_1),$
where $x = (x_1, x_2) \in F, y = (y_1, y_2) \in F.$

Note that this is nothing but complex number field \mathbb{C} . Then $0_F = (0,0)$ and $1_F = (1,0)$.

Exercise

Let $F = (0, \infty) = \mathbb{R}_+$ (positive real numbers) Given x + y := xy, $x \cdot y := e^{\ln(x) \ln(y)}$, show that F satisfies the axioms of field. Find 1_F and 0_F .

Question

Are polynomials a field? Are matrices a field?

E. Özkan

A linear space V is a set, whose elements are called <u>vectors</u> associated with a field F, whose elements are called <u>scalars</u>. Vectors can be added and they can be multiplied by scalars. These operations satisfy the following properties:

Vector addition:
$$x + y$$
, $+: V \times V \rightarrow V$
(A1) $x + y = y + x$ $\forall x, y \in V$ (commutativity)
(A2) $x + (y + z) = (x + y) + z$ $\forall x, y, z \in V$ (associativity)
(A3) $x + 0 = x$ $\forall x \in V$ (additive identity)
(A4) $x + (-x) = 0$ $\forall x \in V$ (additive inverse)

Scalar multiplication: ax, $\cdots : F \times V \to V$ (M1) a(bx) = (ab)x for all $a, b \in F$, $x \in V$ (associativity) (M2) a(x + y) = ax + ay for all $a \in F$, $x, y \in V$ (distributive) (M3) (a + b)x = ax + bx for all $a, b \in F$, $x \in V$ (distributive) (M4) 1x = x (unit rule)

Example

Show that 0x = 0

Set of all vectors (a_1, a_2, \ldots, a_n) with $a_i \in F$. Addition, multiplication are defined componentwise. This space is denoted as F^n . Let $x, y \in F^n$ $x = (a_1, a_2, \ldots, a_n), y = (b_1, b_2, \ldots, b_n)$ Addition: $x + y := (a_1 + b_1, a_2 + b_2, \ldots, a_n + b_n)$ Multiplication: $cx := (ca_1, ca_2, \ldots, ca_n)$ Most common examples are \mathbb{R}^n and \mathbb{C}^n .

Set of all real valued functions $t \to f(t)$ defined on the real line $F = \mathbb{R}$.

Example

Set of all polynomials with degree n with coefficients in F.

Example

Set of all polynomials with degree less than n with coefficients in F. Note that this linear space is a subset of the previous one for $F = \mathbb{R}$.

Let V be a linear space defined over field F, denoted by (V, F). A subset W of V is called a subspace if sums and scalar multiples of elements of W belong to W. That is,

(S1)
$$w_1 + w_2 \in W \quad \forall w_1, w_2 \in W$$

(S2) $aw \in W \quad \forall w \in W \text{ and } \forall a \in F$

Remark

Subset has to be closed under addition and scalar multiplication. All other properties are inherited from the original linear space.

Linear Spaces

Example

linear space $V = \mathbb{R}^2$; subspace $W = [a \ 0]^T : a \in \mathbb{R}$

Example

linear space $V = \mathbb{R}^2$; subspace $W = [a \ 1]^T : a \in \mathbb{R}$

Example

linear space V = set of all real valued functions $t \to f(t)$; subspace $W_1 =$ set of all continuous functions, subspace $W_2 =$ set of all functions periodic with π .

Remark

0 vector itself is a subspace and it is the smallest subspace.

Definition

The sum of two subsets Y and Z of a linear space X, denoted as Y + Z, is the set of all vectors of form y + z, $y \in Y$, $z \in Z$.

Example

Show that Y + Z is a linear subspace of X if Y and Z are

Prove that if Y and Z are subspaces of linear space X, so is their intersection $Y\cap Z.$

Example

If Y and Z are subspaces of linear space X, is their union $Y\cup Z$ a subspace?

Let (V,F) and (W,F) be two linear spaces defined over the same scalar field F. The product space of (V,F) and (W,F) is defined as

•
$$V \times W = \{(v, w) : v \in V, w \in W\}$$

• $(v, w) + (x, y) := (v + x, w + y)$ (vector addition)
• $a(v, w) := (av, aw)$ (scalar multiplication)

A <u>linear combination</u> of n vectors x_1, x_2, \ldots, x_n of a linear space C is a vector of the form $a_1x_1, +a_2x_2+, \ldots, +a_nx_n$, where a_i 's are scalars in F.

Definition

The set of <u>all</u> linear combinations of x_1, x_2, \ldots, x_n is called the span of $\{x_1, x_2, \ldots, x_n\}$; denoted by $sp\{x_1, x_2, \ldots, x_n\}$.

Definition

Vectors x_1, x_2, \ldots, x_n in X are said to be linearly independent if $a_1x_1, +a_2x_2+, \ldots, +a_nx_n = 0$ implies $a_i = 0, \forall i$. Otherwise, they are linearly dependent.

Linear Spaces

Example

i) $\left\{ \begin{bmatrix} 0\\1 \end{bmatrix}, \begin{bmatrix} 1\\0 \end{bmatrix} \right\}$ ii) $\left\{ \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} 4\\5\\6 \end{bmatrix}, \begin{bmatrix} 7\\8\\9 \end{bmatrix} \right\}$

Example

Consider the linear space of polynomials with degree $n \leq 2$. Let subset $S = \{P_1, P_2, P_3\}$ be such that $p_1(t) = 1$, $p_2(t) = t$, $p_3(t) = t^2$, $\forall t$ Is this set linearly independent?

Linear Spaces

Example

$$\mathsf{S} = \{\cos(t), \sin(t), \cos(t - \pi/3)\}$$

Definition

Let V be a linear space and (finite) set of vectors $S = \{x_1, \ldots, x_n\}$ be a subset of V. S is said to be a basis for V iff

$$\bullet Span(S) = V$$

S is a linearly independent set.

Definition

A (finite dimensional) linear space V has many bases. All these bases must have the same number of vectors. That number is called the <u>dimension</u> of V.

i)
$$\left\{ \begin{bmatrix} 0\\1 \end{bmatrix}, \begin{bmatrix} 1\\0 \end{bmatrix} \right\}$$
, ii) $\left\{ \begin{bmatrix} 1\\1 \end{bmatrix}, \begin{bmatrix} 2\\3 \end{bmatrix} \right\}$

Definition

Ordered basis is a basis (x_1, x_2, \ldots, x_n) , where basis vectors are given in a specific ordering.

If (x_1, x_2, \ldots, x_n) is an ordered basis of V and $y \in V$, then there is a unique n-tuple of scalars (a_1, a_2, \ldots, a_n) such that $y = \sum_{i=1}^n a_i x_i$. Scalars (a_1, a_2, \ldots, a_n) are called the <u>components</u> of y with respect to the ordered basis (x_1, x_2, \ldots, x_n) .

With respect to some ordered basis $B_1 = (x_1, x_2)$ of \mathbb{R}^2 , let the vectors y_1, y_2, y_3 be presented by $[y_1]_B = \begin{bmatrix} 1\\1\\1 \end{bmatrix}$, $[y_2]_B = \begin{bmatrix} 1\\0\\1 \end{bmatrix}$, $[y_3]_B = \begin{bmatrix} 2\\3\\3 \end{bmatrix}$. That is, $y_1 = 1x_1 + 1x_2$, $y_2 = 1x_1 + 0x_2$, $y_3 = 2x_1 + 3x_2$. Let our new basis be $B_2 = (y_1, y_2)$. Express y_3 w.r.t. this new basis.

<u>Remark:</u> For a given ordered basis, the representation of a vector is unique.

Consider a linear space V over F, where F is either \mathbb{R} or \mathbb{C} . Let there be a function $x \to ||x||$ that assigns to each $x \in V$, a nonnegative real number $||x|| \in \mathbb{R} > 0$. Such function is called a **norm** if it satisfies the following properties.

(P1)
$$||x_1 + x_2|| \le ||x_1|| + ||x_2||$$

(P2) $||\alpha x|| = |\alpha| ||x|| \quad \forall x \in V \text{ and } \alpha \in F$
(P3) $||x|| = 0 \Leftrightarrow x = 0$

The expression "'||x||"' is read "'the norm of x"' and the function ||.|| is said to be a norm on V.

The triplex $(V, F, \|.\|)$ is called a **normed space**.

Norms can quantify **distance** between two points in our linear space.

The distance between $x_1, x_2 \in V$ is the norm of the vector $x_1 - x_2$ or $x_2 - x_1$: $||(x_1 - x_2)||$.

The norm of x, ||x|| is the distance of x to the origin 0.

Now that we have a proper tool for measuring distance (norm), we can begin studying the "geometry" of the space (parallelism, orthogonality, area, volume, shape in general).

Let $V = \mathbb{R}^2$, $F = \mathbb{R}$, i) $||x||_1 := |\alpha_1| + |\alpha_2|$. Is $||.||_1$ a norm? ii) $||x||_2 := (\alpha_1^2 + \alpha_2^2)^{\frac{1}{2}}$. Is $||.||_2$ a norm? iii) $||x||_{\infty} := \max(|\alpha_1|, |\alpha_2|)$. Is $||.||_{\infty}$ a norm?

All these norms can be generalized into what we call a 'p-norm'.

$$||x|| := (|\alpha_1|^p + |\alpha_2|^p)^{\frac{1}{p}}$$

Note that $\lim_{p\to\infty} \|x\|_p = \|x\|_{\infty}$.

Normed linear spaces

p-norm:

Examples: On lecture notes...

Matrix Norms

Example

Let
$$V = \mathbb{R}^{n \times m}$$
, and $A = [a_{ij}]$,

 $\|A\| = \max_{i,j} |a_{ij}| \text{ is a norm.}$

Example

Let
$$V = \mathbb{R}^{n \times m}$$
, and $A = [a_{ij}]$,

$$\|A\| = \max_i \sum_{j=1}^n |a_{ij}|$$
 (abs sum of rows)

Exercise

Show that this is a norm.

 $A: \mathbb{R}^n \to \mathbb{R}^m$ be an $m \times n$ matrix. Let $\|.\|_{\mathbb{R}^n}$ and $\|.\|_{\mathbb{R}^m}$ denote the norms (vector norms) in \mathbb{R}^n and \mathbb{R}^m respectively. The **induced norm** of a matrix is defined as

$$||A|| := \max_{x \in \mathbb{R}^n, x \neq 0} \frac{||Ax||_{\mathbb{R}^m}}{||x||_{\mathbb{R}^n}}.$$

Remark:

The induced matrix norm is defined in terms of vector norms. An equivalent definition is:

$$||A|| := \max_{||x||=1} ||Ax||.$$

Remark:

$$\|Ax\| = \frac{\|Ax\|}{\|x\|} \|x\| (\text{ suppose } \|x\| \neq 0)$$

$$\leq \left(\max_{y} \frac{\|Ay\|}{\|y\|}\right) \|x\|$$

$$= \|A\| \|x\| \Rightarrow \|Ax\| \leq \|A\| \|x\|$$

Furthermore, there exists a vector x^* such that $\|Ax^*\| = \|A\| \, \|x^*\|$ which may not be unique.

Choose $\|.\|_2$ in \mathbb{R}^n and \mathbb{R}^m ,

$$||A|| = \max_{||x||=1} ||Ax|| = \max_{||x||=1} \sqrt{(Ax)^T Ax} = \max_{||x||=1} \sqrt{x^T A^T Ax}$$

Convergence

Definition

Let $(V, F, \|.\|)$ be a normed space. Let $\{v_n\}_{n=1}^{\infty}$ be a sequence of vectors in V. $v_n \in V$ $n = 1, 2, \ldots$ The sequence is said to be **convergent** to the limit $\bar{v} \in V$ iff $||v_n - \bar{v}|| \to 0$ as $n \to \infty$

Equivalently, given any $\epsilon > 0$, $\exists N \ (N \text{ depends on } \epsilon)$ such that n > N implies $||v_n - \bar{v}|| \le \epsilon$.

Remark:

A sequence that is not convergent is called **divergent**.

Given $V = \mathbb{R}$ and ||v|| = |v|, consider the sequence $\left\{ \left(\frac{1}{2}\right)^n \right\}_{n=1}^{\infty}$. The sequence is convergent to v = 0.

Example

Consider the sequence $\{(-1)^n\}_{n=1}^\infty$

In most engineering applications, we are interested in the convergence of an iterative algorithm.

In general, we do not know where!

The given definition of the convergence requires the limiting element $\bar{v} \in V$, an element we may not know, to verify convergence.

There are ways to exclude " $\bar{v} - dependence$ ".

Let $(V, F, \|.\|)$ be a normed space. A sequence $\{v_n\}_{n=1}^{\infty}$ in V is said to be a **Cauchy sequence** if $\forall \epsilon > 0$, $\exists N$ (depending on ϵ) such that $\|v_n - v_m\| < \epsilon$ for all n, m > N.

Remark:

Every convergent sequence is a Cauchy sequence. The converse, in general, is not true.

Example

Consider the normed space $(\mathbb{Q}, \mathbb{Q}, |.|)$, (i.e., set of rational numbers over the field rational numbers with norm being the absolute value). Is the sequence $\{1 + \sum_{i=1}^{n} \frac{1}{i!}\}_{n=1}^{\infty}$ convergent?

A normed space is said to be **complete** if every Cauchy sequence is convergent. A complete normed space is called a **Banach Space**.

Example

"'A normed space that is not complete"' Let $V = \{f | f : [-1, 1] \to \mathbb{R}, f \text{ is continuous and } \int_{-1}^{1} |f(t)| dt < \infty\}.$ Define $||f||_1 := \int_{-1}^{1} |f(t)| dt.$ Now consider the sequence $\{f_n\}_{n=1}^{\infty}$ defined as follows:

An inner product space is a linear space with an additional structure called inner product.

Definition

Let V be a linear space over field F. An inner product is a map of the form $\langle \cdot, \cdot \rangle : V \times V \to F$ that satisfies the following three axioms for all vectors $x, y, z \in V$ and all scalars $\alpha \in F$.

Notice that

$$\langle x, y + z \rangle = \langle x, y \rangle + \langle x, z \rangle$$

$$\langle x, \alpha y \rangle = \overline{\alpha} \, \langle x, y \rangle$$

$$V=\mathbb{C}^n$$
, $\langle x,y
angle =\sum_{i=1}^n x_i\overline{y_i}$

Example

• • •

Theorem

Cauchy-Schwarz inequality:

$$|\langle x, y \rangle|^2 \le \langle x, x \rangle \langle y, y \rangle$$

Summary

We have studied

Sets

- Linear Spaces
- Normed Linear Spaces
- Inner Product Spaces

Sets

Very general concept. We can perform:

- Define subsets
- Take unions, intersections, complements, set subtraction

Linear Spaces

We defined members of our sets as vectors and defined

- Vector addition
- Scalar multiplication

We obtained an algebraic structure, where we can

- perform algebraic operations,
- define linear combinations,
- define span, basis, etc. Find representation of vectors wrt to basis,
- define linear transformations between vector spaces.

Normed Linear Spaces

We defined **norms** to incorporate a **geometric structure** on top of the algebraic structure. We can calculate the **distance** between two members of the vector space: ||x - y|| In a normed space we can,

- Define (measure) distance
- Analyse convergence of sequences

Normed spaces have a major shortcoming. The direction cannot be characterized. The direction, or rather **relative direction**, can be studied by the help of a tool we call the **inner product**.

Inner Product Spaces

Enhancement of the geometric structure of a normed space

Example

Let u an v be two unit vectors in \mathbb{R}^n

- $\langle u,v\rangle=0$ if they are orthogonal
- $\blacksquare \langle u,v\rangle$ is maximum when u and v point in the same direction
- $\blacksquare \langle u,v\rangle$ is minimum when u and v point in the opposite direction

Let V and W be linear spaces over the same field F. A linear transformation T is a mapping $T: V \to W$ satisfying $T(a_1x_1 + a_2x_2) = a_1T(x_1) + a_2T(x_2) \quad \forall a_1, a_2 \in F \quad and \quad \forall x_1, x_2 \in V$

Example

•
$$V = W$$
 polynomials of degree less than n in S ; $T = \frac{d}{ds}$

•
$$V = W = \{$$
continuous functions of type $f : [0, 1] \to \mathbb{R} \};$
 $T_f = \int_0^1 f(s) ds$

Given linear transformation $T: V \to W$, the **null space** of T is the set of all $x \in V$ satisfying $Tx = 0_w$. That is, $\mathcal{N}(T) := \{x \in V : Tx = 0\}$

Definition

Given linear transformation $T: V \to W$, the **range space** of T the set of all $w \in W$ satisfying Tv = W. That is $\mathcal{R}(T) := \{w \in W : w = Tv \text{ for some } v \in V\}$

Remark

For a linear transformation $T: V \to W$, $\mathcal{N}(T)$ is a linear subspace of V.

Remark

 $\mathcal{R}(T)$ is a subspace of W.

A function $f: X \to Y$ is one-to-one if $x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)$

Theorem

Let $T: V \to W$ be a linear transformation. Then mapping T is one-to-one if and only if $\mathcal{N}(T) = \{0\}$.