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January 6, 2017

1 Direct Sum

Definition Let V be a vector space and let M1, M2, . . ., Mk are subspaces of V. The

sum of these subspaces M is defined as

M = {m ∈ V : m = m1 +m2 + . . .+mk where mi ∈Mi, i = 1, 2, . . . , k}.

Theorem The sum of subspaces is also a subspace of V .

Proof:

Definition Let M1, M2, . . ., Mk be subspaces of a vector space V. These subspaces are
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said to be linearly independent if,

m =m1 +m2 + . . .+mk = 0, where mi ∈Mi implies

m1 =m2 = . . . = mk = 0 for i = 1, 2, . . . , k

Definition Let M1, M2, . . ., Mk be subspaces of a vector space and also let

• M = M1 +M2 + . . .+Mk

• M1, M2, . . ., Mk are linearly independent

Then M is said to be the direct sum of subspaces M1, M2, . . ., Mk and denoted by

M = M1 ⊕M2 ⊕ . . .⊕Mk

Definition If M = V (the linear space itself) then V = M1⊕M2⊕ . . .⊕Mk is called the

direct sum decomposition of V.

Example: Let V=R4, x = [x1, x2, x3, x4]T ∈ R.

Definition Let V be an inner product space. Two subspaces M1 and M2 are said to be

orthogonal if,

〈m1,m2〉 = 0 ∀m1 ∈M1,m2 ∈M2.
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Orthogonality is denoted as M1 ⊥M2

Definition Let M = M1⊕M2⊕ . . .⊕Mk and let Mi ⊥Mi for all i 6= j. Then M is said

to be orthogonal direct sum of subspaces M1,M2, . . . ,Mk.

Symbolically,

Definition Let M be a subspace of an inner product space V . The orthogonal com-

plement M⊥ of the subspace M is defined as

M⊥ := {x ∈ V : 〈x,m〉 = 0∀m ∈M}.

Theorem M⊥ is itself a subspace.

Proof:

Example: V = R3, M = Span(





0

−1

1


,



−1

0

1




), M⊥ =?
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Theorem Let V be an inner product space and M is a subspace of V . V can always be

written as the direct sum of a subspace and its orthogonal complement, i.e., we always

have V = M ⊕M⊥.

Proof:
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Projection Theorem

2 Projection Theorem

Theorem “Projection Theorem”

Let H be a Hilbert space (inner product space, complete w.r.t the norm induced by the

inner product) and let M be a finite dimensional subspace of H. For any x ∈ H, the

following minimization problem has a solution.

min
m∈M

‖x−m‖

(i.e., we can find the closest vector to x lying in the subspace M).

Proof:
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Projection Theorem

Remark: m∗ = x1 can be interpreted as the “best approximation” of x chosen from the

vectors in M. Vector x2 can be interpreted as the “error in the approximation”. This error

must be orthogonal to the subspace.

Computational aspects of the projection theorem: Suppose we are given a basis for M .

That is, M = Span({v1, v2, . . . vk}). Given x ∈ H ⊃ M , we want to figure out x1 ∈ M ,

where x = x1 + x2 for x2 ∈M⊥.
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Projection Theorem

Example: Let H be the space of square integrable functions with domain [π, π] with

inner product 〈f1, f2〉 =
´ π
−π f1(t)f2(t)dt. Let M be the subspace M = Span{ ejkt2π }

N
k=−N .

Note that dimension of M is 2N + 1 and the basis set is orthonormal.

〈fn, fm〉 =
ˆ π

−π
ej(n−m)tdt = δn,m

Now, let g ∈ H be an arbitrary vector (a function). Then g = g1 + g2, where g1 ∈M and

g2 ∈M⊥.

Note that, g1(t) is the best approximation to g(t) within the subspace M . g1(t) turns

out to be the finite Fourier series representation of g(t). As N → ∞ we obtain the

Fourier series representation.

Special Case: “Application of the projection theorem in Cn”. Let {m1,m2, . . . ,mk}, k < n

be a basis for a subspace M of Cn. That is, M = Span({m1,m2, . . . ,mk}) . Given an

arbitrary vector x ∈ Cn, we know that x = x1 + x2 with x1 ∈ M , x2 ∈ M⊥. We also

know that x1 and x2 are unique. Let x1 = ∑k
i=1 αimi . Define matrix B = [m1 m2 . . .mk]
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Projection Theorem

whose columns are basis vectors. Then we can write x1 = Bα for α = [α1, . . . , αk]T .

Remark: An orthogonal projection matrix P ∈ Ck×k satisfies:

• P ∗ = P

• P 2 = P ⇒ P i = P for all i = 1, 2, . . .

Remark: In Cn the standard inner product is 〈x, y〉 = y∗x. In Rn, this boils down to

〈x, y〉 = yTx

Example: “Orthogonal projection” Find the orthogonal projection of the vector



1

0

0



onto the subspace spanned by





1

1

1


,



1

−1

1




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Projection Theorem
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3 Projection Theorem & Solution of Linear Equa-

tions

consider the linear equation expressed as

Ax = b where A ∈ Cm×n & b ∈ Cm×1 & x ∈ Cn×1.

Is there a solution to x? If the answer is yes, is it unique?

Remark:

• A solution exists if and only if b ∈ R(A).

• A solution is unique if and only if N(A) = 0.

Example: Let A = [1 1 1 1]T and b = [2.2 1.9 2.1 1.8]T .

When there is no exact solution, one can try to find the "‘best approximation"’ to a

solution. An approximation can be found by minimizing the norm of the error,

min
x∈Cn
‖Ax− b‖2

If a solution exists, then ‖Ax− b‖2 = 0, otherwise we can find an approximate solution
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Projection Theorem & Solution of Linear Equations

such that x̂ = arg minx∈Cn ‖Ax− b‖
2.

Example: The length x of a metal rod is inaccurately measured four times and the

results are recorded as l1, l2, l3, and l4. What is the best approximation to x?
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Projection Theorem & Solution of Linear Equations

Example: Consider the following scenario:
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Projection Theorem & Solution of Linear Equations

Remark: Suppose x̂ is a solution of Ax = b1. Suppose that m is any vector in N(A),

then x̂+m is another solution.

In the case of non-uniqueness, we are going to look for a solution with the minimum norm.

min
Ax=b1

‖x‖

Let x̂a and x̂b be two solutions to Ax = b. We can decompose both solutions uniquely as:
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Projection Theorem & Solution of Linear Equations

Theorem N(A)⊥ = R(A∗).

Proof:
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Projection Theorem & Solution of Linear Equations

Example: Consider the previous example:
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Projection Theorem & Solution of Linear Equations

Summary:
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Special Cases of Ax = b

4 Special Cases of Ax = b

4.1 Columns of A form a linearly independent set

A is full-column rank.
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Special Cases of Ax = b

4.2 Rows of A form a linearly independent set

A is full-row rank.
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Special Cases of Ax = b

4.3 Both rows & columns of A form a linearly independent set

A is invertible.
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5 Spectral Analysis of Linear Operators

Definition Let A : V → V be a linear transformation defined over the vector space V .

A subspace M of V is said to be invariant under A if A(x) ∈M for all x ∈M .

Example: R(A) is invariant under A.

Example: N(A) is invariant under A.

Definition Powers of a linear operator are defined as,

Ak(x) = A(A(. . . A(x) . . .))︸ ︷︷ ︸
A applied k times

By using the above definition polynomials of A can be constructed as linear combinations

of powers of A.

Example: P (A) = α0A
n + α1A

n−1 + . . .+ αn−1A+ αnI.

Exercise: Show that R(P (A)) and N(P (A)) are invariant under A.

Definition Let A denote the matrix representation of a linear operator from V to V (A

is a square matrix). The eigenvalues of A, denoted by λi, are defined as the n (n = dim

V ) roots of the equation det(sI-A)=0, where det(sI-A) is known as the characteristic

polynomial of A.
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Spectral Analysis of Linear Operators

Definition Vector(s) ei ∈ V satisfying ei 6= 0 and Aei = λiei is called the eigenvec-

tor(s) of A corresponding to eigenvalue λi.

Example: Let A : Cn → Cn and λi be an eigenvalue of A. N(A−λiI) is invariant under

A.

Proof:

Theorem Let A ∈ Cn×n be the matrix representation of a linear transformation T :

Cn → Cn with respect to the canonical basis. Suppose that,

• Cn = M1 ⊕M2 ⊕ . . .⊕Mk

• Each subspace Mi is invariant under T .

Let dim(Mi) = ni and Mi has a basis set {bi1, bi2, . . . , bini} =: Bi. Then with respect to

basis {b1
1, b

1
2, . . . , b

1
n1; b2

1, b
2
2, . . . , b

2
n2; . . . ;bk1, bk2, . . . , bknk},transformation T has a block
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Spectral Analysis of Linear Operators

diagonal matrix representation.

Ā =



Ā1 0 . . . 0

0 Ā2 . . . 0

... ... . . . ...

0 0 . . . Āk


,

where Āi ∈ Cni×ni. In particular, Āi = B−1AB, where B ∈ Cni×ni is given by B =

[B1, B2, . . . , Bni ]

Proof:
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Spectral Analysis of Linear Operators

Example: LetA =



0 1 0

0 0 1

−2 −5 −4


,M1=Span





−2

1

0


,



−1

0

1




,M2=Span





1

−2

4




i) Is M1 invariant under A?

ii) Is M2 invariant under A?

iii) Find Ā?
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Spectral Analysis of Linear Operators

Let A be an n × n matrix with n distinct eigenvalues λ1, λ2, . . . , λn Let e1, e2, . . . , en be

the eigenvectors corresponding to these eigen values, i.e., Aei = λiei, i = 1, 2, . . . , n.

Claim: The set of eigenvectors {e1, e2, . . . , en} form a linearly independent set.

Furthermore, N(A− λiI) = Span(ei) for all i.
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Spectral Analysis of Linear Operators

Proof:
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Spectral Analysis of Linear Operators
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Spectral Analysis of Linear Operators

Theorem "’Cayley-Hamilton"’ Every n× n matrix satisfies its own characteristic equa-

tion, i.e., d(A) = 0n×n.

Example:

Proof:
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Spectral Analysis of Linear Operators

Proof (..continued)

Fact: Let M ∈ Cn×n. For each δ > 0, there exists a matrix M̃ ∈ Cn×n with distinct

eigenvalues satisfying
∥∥∥M − M̃∥∥∥ < δ. This is equivalent to stating: "‘Matrices with

distinct eigenvalues form a dense subset of Cn×n "’.

Fact: "‘An example"’, Assume A =

 a b

c d

 has repeated eigenvalues, i.e., λ1 = λ2.

Then for each δ > 0 one can find numbers ε1, ε2, ε3, ε4 satisfying |εi| < δ such that

Aδ =

 a+ ε1 b+ ε2

c+ ε3 d+ ε4

 has distinct eigenvalues, i.e., λδ1 6= λδ2

Let us choose a sequence {An}∞n=1 satisfying ‖A− An‖ < 1
n
and An has distinct eigenval-

ues. Let us define dn(s) := det(sI − An). Since det(.) is a continuous function one can

write d(A) = limn→∞ dn(An).

Note that dn(An) = 0 for all n. Hence d(A)=0.

Example:
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Spectral Analysis of Linear Operators

Example:

29



Minimal Polynomial

6 Minimal Polynomial

Definition For an n× n matrix A, the minimal polynomial m(s) is the monic poly-

nomial with smallest degree such that m(A) = 0n×n

Remark: A monic polynomial has unity as the coefficient of its highest order term.

Theorem Given A ∈ Cn×n, let m(s) be its minimal polynomial.

• m(s) is unique;

• m(s) divides d(s), i.e., there exist a q(s) such that d(s) = m(s)q(s);

• Every root of d(s) is also a root of m(s).
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Minimal Polynomial

Proof:
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Minimal Polynomial

Example: A =



1 0 0

0 2 0

0 0 3


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Minimal Polynomial

Example: "‘repeated eigenvalues"’

i) A1 =



1 0 0

0 2 1

0 0 2



ii) A2 =



1 0 0

0 2 1

0 0 2


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Minimal Polynomial

Remark:

d(s) =(s− λ1)r1(s− λ2)r2 . . . (s− λσ)rσ ,

m(s) =(s− λ1)m1(s− λ2)m2 . . . (s− λσ)mσ ,

where mi ≤ ri and i = 1, 2, . . . , σ.

ri: algebraic multiplicity of λi.

mi: geometric multiplicity of λi.

Let Ni := N(A− λiI)mi . Then,

Cn = N1 ⊕N2 ⊕ . . . Nσ

Furthermore, dim(Ni) = ri hence n = r1 + r2 + . . .+ rσ.

Theorem N(A − λiI) ⊂6= N(A − λiI)2 ⊂ 6= ... ⊂ 6= N(A − λiI)ki = N(A − λiI)ki+1 for

some ki ≥ 1.
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Minimal Polynomial

Theorem .

• ki = mi

• dim(N(A− λiI)mi) = ri
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Minimal Polynomial

Example: A =



1 0 0 0

0 1 1 0

0 0 1 0

0 0 0 2


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Minimal Polynomial

Example: A =



1 1 0 0

0 1 1 0

0 0 1 0

0 0 0 2


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Minimal Polynomial

Example:
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Minimal Polynomial

Remark: Let A be an n× n matrix and Ā be its Jordan canonical form.

• Ā = B−1AB, where B is invertible.

• rank(A) = rank (BA) = rank (AB) = rank(Ā)

• dim(N(A− λiI)) = dim(N(Ā− λiI))

where the last remark follows from the previous ones and the following:

B−1(A− λiI)B = B−1AB − λiIB−1B = Ā− λi.

We already know that Cn = N((A− λ1I)m1)⊕N((A− λ2I)m2)⊕ . . .⊕N((A− λσI)mσ).

The transformation matrix B can be written as B = [B1 B2 . . . Bσ], where columns

of Bi span N((A− λiI)mi).

Our next aim is to construct Bi ∈ Cn×ri whose columns span N((A− λiI)mi) and ri× ri

block Āi satisfies ABi = BiĀi.

LetMi := A−λiI, and let’s choose a vector x such that x ∈ N(Mmi
i ), but x /∈ N(Mmi−1

i ).

Now consider the chain of vectors:

{Mmi−1
i x, Mmi−2

i x, . . . , Mix, x}

Claim: The set {Mmi−1
i x, Mmi−2

i x, . . . , Mix, x} is linearly independent.
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Minimal Polynomial

Proof:
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Minimal Polynomial

Example:
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Minimal Polynomial

Special cases:

i) A has a single eigenvalue λi, and mi = ri.
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Minimal Polynomial

ii) A has a single eigenvalue λi, and mi = 1.
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Minimal Polynomial

Example:
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Minimal Polynomial

Example:
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Hermitian Matrices

Example:

7 Hermitian Matrices

Definition An n×n complex matrix A is called Hermitian if A∗ = A, i.e., its conjugate

transpose is equal to itself. If A is a real matrix then A∗ = AT . 1

Hermitian matrices enjoys important properties.

Theorem Let A be Hermitian, then 〈x,Ax〉 is real for all x ∈ Cn

Proof:

Theorem All eigenvalues of a Hermitian matrix are real.

Proof:

1In some books, conjugate transpose is denoted by AH instead of A∗.

46



Hermitian Matrices

Theorem Eigenvectors of Hermitian matrices are orthogonal. Let A be Hermitian and

λi, λj be two distinct (λi 6= λj) eigenvalues with eigenvectors ei, ej, then 〈ei, ej〉 = 0.

Proof:

Theorem Let A be Hermitian. Then its minimal polynomial is

m(s) = (s− λ1)(s− λ2) . . . (s− λσ).

That is, mi = 1 for all eigenvalues of Hermitian matrices.

Proof:

Therefore for a Hermitian matrice A with characteristic polynomial

d(s) = (s− λ1)r1(s− λ2)r2 . . . (s− λσ)rσ , we can write

Cn = N(A− λ1I)
dim=r1

⊥
⊕ N(A− λ2I)

dim=r2

⊥
⊕ . . .

⊥
⊕ N(A− λσI)

dim=rσ
.
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Hermitian Matrices

Theorem Let A be a Hermitian matrice with characteristic polynomial

d(s) = (s − λ1)r1(s − λ2)r2 . . . (s − λσ)rσ . Then there exist a unitary matrix P, i.e.,

P−1 = P ∗ such that P ∗AP = Λ where

Λ =



Λ1 0 . . . 0

0 Λ2
...

... . . . 0

0 . . . 0 Λσ


and each Λi is ri × ri, Λi =



λi 0 . . . 0

0 λi
...

... . . . 0

0 . . . 0 λi


Proof:

Theorem Let A be an n × n Hermitian matrix with eigen values λ1, λ2, . . . , λσ. Let

λmin := mini λi and λmax := maxi λi. Then for all x ∈ Cn we have,

λmin 〈x, x〉 ≤ 〈x,Ax〉 ≤ λmax 〈x, x〉

Proof:

Recall that Cn = N(A− λ1I)
⊥
⊕ N(A− λ2I)

⊥
⊕ . . .

⊥
⊕ N(A− λσI). Then for a given x we
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Hermitian Matrices

can write x = x1 + x2 + . . .+ xσ with xi ∈ N(A− λiI). Then

〈x,Ax〉 =
〈

σ∑
i=1

xi, A
σ∑
j=1

xj

〉

=
〈

σ∑
i=1

xi,
σ∑
j=1

Axj

〉

=
〈

σ∑
i=1

xi,
σ∑
j=1

λjxj

〉

=
σ∑
i=1

〈
xi,

σ∑
j=1

λjxj

〉

=
σ∑
i=1
〈xi, λixi〉

=
σ∑
i=1

λi 〈xi, xi〉

⇒ λmin 〈x, x〉 ≤ 〈x,Ax〉 ≤ λmax 〈x, x〉

Definition A Hermitian matrix A is said to be positive definite if 〈x,Ax〉 > 0 for all

x 6= 0. 2

Theorem If A is a positive definite Hermitian matrix, then all of its eigenvalues are

positive.

Proof:

2A Hermitian matrix A is said to be positive semi-definite if 〈x, Ax〉 ≥ 0 for all x 6= 0.
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Functions of a Matrix

8 Functions of a Matrix

The basic motivation to study matrix-valued functions comes from the differential equa-

tions describing linear systems3

ẋ(t) = Ax(t),

and its solution

x(t) = eAtx(0).

Definition Consider a scalar valued function f(s) with the following power series expan-

sion:

f(s) =
∞∑
i=0

αis
i

The matrix valued function f(A) is defined as,

f(A) :=
∞∑
i=0

αiA
i,

which is another matrix with the same size as A.

Example:

et =
∞∑
i=0

ti

i! ⇒ eA :=
∞∑
i=0

Ai

i!

By using Cayley Hamlton theorem, we can express nth or higher orders of an n×n matrix

as a linear combination of its lower powers: I, A, A2, . . . , An−1. Then eA can be

expressed as,

eA = c0 + c1A+ c2A
2 + . . .+ cn−1A

n−1.

3Motivation to pass this course is neglected in this statement.
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Similarly, one can use the minimal polynomial of a matrix to express the lth power of an

n× n matrix as a linear combination of its lower powers: I, A, A2, . . . , Al−1, where l

is the order of its minimal polynomial. In that case we can write,

eA = c0 + c1A+ c2A
2 + . . .+ cl−1A

l−1.

Since l ≤ n, in general it is easier to find the l coefficients of the above equation.

Next, we will deal with the problem of finding the unknown coefficients.

8.1 First Method

Let

f(s) =
∞∑
i=0

αis
i,

and

f(A) =
∞∑
i=0

αiA
i.

Let us define p(s) and p(A) as follows,

p(s) = c0 + c1s+ c2s
2 + . . .+ cl−1s

l−1,

p(A) = c0 + c1A+ c2A
2 + . . .+ cl−1A

l−1.

Then we have the equality

f(A) = p(A).
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Case 1: Matrix A is diagonalizable. Suppose m(s) = (s − λ1)(s − λ2) . . . (s − λσ), i.e.,

l = σ and m1 = m2 = . . . = mσ = 1.

⇒ we have f(λj) = p(λj) for j = 1, . . . , l which results in l equations for l unknowns

c0, c1, . . . , cl−1.

Example: A =

 2 1

1 2

, find eA and log(A).
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Case 2: Matrix A is not diagonalizable.

Consider the following example. Let A ∈ R3 and m(s) = (s−λ1)2(s−λ2). Let the Jordan

canonical form of A be equal to J =



λ1 1 0

0 λ1 0

0 0 λ2


. Then,

f(A) = c0 + c1A+ c2A
2 = p(A)

f(λ1) = p(λ1)

f(λ2) = p(λ2)

These two equations are not enough to find the three unknowns c0, c1, and c2.

Consider the matrix P, which transforms the matrix A into its Jordan canonical form, i.e.,

J = P−1AP . We know that P has the following form: P = [ e1 f1︸ ︷︷ ︸
chainforλ1

e2︸︷︷︸
chainforλ2

], where

e1, e2 are eigenvectors corresponding to λ1 and λ2 respectively and f1 is a generalized

eigenvector for λ1. Notice that,

[e1 f1 e1]



λ1 1 0

0 λ1 0

0 0 λ2


= A[e1 f1 e1]
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⇒ Af1 = λ1f1 + e1

A2f1 = λ1Af1 + Ae1

= λ1(λ1f1 + e1) + λ1e1 = λ2
1f1 + 2λ1e1

A3f1 = λ2
1Af1 + 2λ1Ae1 = λ3

1f1 + 3λ2
1e1

...

Aif1 = λi1f1 + iλi−1
1 e1

Returning back to the equation,

f(A) = p(A)
∞∑
i=0

αiA
i =

l−1∑
i=0

ciA
i

and multiplying both sides by f1 from right results,

∞∑
i=0

αiA
if1 =

l−1∑
i=0

ciA
if1

∞∑
i=0

αi(λi1f1 + iλi−1
1 e1) =

l−1∑
i=0

ci(λi1f1 + iλi−1
1 e1)

⇒ f(λ1)f1 + f ′(λ1)e1 = p(λ1)f1 + p′(λ1)e1.

Since f(λ1) = p(λ1), we have

f ′(λ1)e1 = p′(λ1)e1.

Since ei 6= 0 we have

f ′(λ1) = p′(λ1),

which is the additional equation needed to find the coefficients c0, c1, . . . , cl−1 of p(A).
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General case:

Let m(s) = (s− λ1)m1(s− λ2)m2 . . . (s− λσ)mσ , we have the following set of equations to

find the coefficients c0, c1, . . . , cl−1 of p(A):

f (t)(λj) = p(t)(λj), for j = 1, . . . , σ t = 0, . . . ,mj − 1,

where t denotes the derivative order.

Example: A =



0 1 0 0 0

0 0 1 0 0

0 0 0 0 0

0 0 0 1 1

0 0 0 0 1



. Find sin(πA).
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Remark:

f(A) does not exist when f (t)(λj) j = 1, . . . , σ, t = 0, . . . ,mj − 1, does not exist.

Example: A =

 0 0

0 1

. Consider f1(s) = log(s) and f2(s) = (1− s)−1.

λ1 = 0, λ2 = 1, ⇒ m(s) = s(s− 1)

log(A) and (I − A)−1 do not exist since f1(λ1) and f2(λ2) do not exist.

9 Function of a Matrix Given Its Jordan Form
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Example:
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Example:
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