Chapter 2

January 6, 2017

1 Direct Sum

Definition Let V be a vector space and let M_1, M_2, \ldots, M_k are subspaces of V. The **sum** of these subspaces M is defined as

 $M = \{m \in V : m = m_1 + m_2 + \ldots + m_k \text{ where } m_i \in M_i, i = 1, 2, \ldots, k\}.$

Theorem The sum of subspaces is also a subspace of V.

Proof:

Definition Let M_1, M_2, \ldots, M_k be subspaces of a vector space V. These subspaces are

said to be linearly independent if,

 $m = m_1 + m_2 + \ldots + m_k = 0$, where $m_i \in M_i$ implies $m_1 = m_2 = \ldots = m_k = 0$ for $i = 1, 2, \ldots, k$

Definition Let M_1, M_2, \ldots, M_k be subspaces of a vector space and also let

- $M = M_1 + M_2 + \ldots + M_k$
- M_1, M_2, \ldots, M_k are linearly independent

Then M is said to be the **direct sum** of subspaces M_1, M_2, \ldots, M_k and denoted by $M = M_1 \oplus M_2 \oplus \ldots \oplus M_k$

Definition If M = V (the linear space itself) then $V = M_1 \oplus M_2 \oplus \ldots \oplus M_k$ is called the direct sum decomposition of V.

Example: Let $V = \mathbb{R}^4$, $x = [x_1, x_2, x_3, x_4]^T \in \mathbb{R}$.

Definition Let V be an inner product space. Two subspaces M_1 and M_2 are said to be orthogonal if,

$$\langle m_1, m_2 \rangle = 0 \quad \forall m_1 \in M_1, m_2 \in M_2.$$

Orthogonality is denoted as $M_1 \perp M_2$

Definition Let $M = M_1 \oplus M_2 \oplus \ldots \oplus M_k$ and let $M_i \perp M_i$ for all $i \neq j$. Then M is said to be **orthogonal direct sum** of subspaces M_1, M_2, \ldots, M_k .

Symbolically,

Definition Let M be a subspace of an inner product space V. The orthogonal complement M^{\perp} of the subspace M is defined as

$$M^{\perp} := \{ x \in V : \langle x, m \rangle = 0 \forall m \in M \}.$$

Theorem M^{\perp} is itself a subspace.

Example:
$$V = \mathbb{R}^3$$
, $M = Span(\left\{ \begin{bmatrix} 0\\ -1\\ 1 \end{bmatrix}, \begin{bmatrix} -1\\ 0\\ 1 \end{bmatrix} \right\}), \quad M^{\perp} = ?$

Theorem Let V be an inner product space and M is a subspace of V. V can always be written as the direct sum of a subspace and its orthogonal complement, i.e., we always have $V = M \oplus M^{\perp}$.

2 Projection Theorem

Theorem "Projection Theorem"

Let H be a Hilbert space (inner product space, complete w.r.t the norm induced by the inner product) and let M be a finite dimensional subspace of H. For any $x \in H$, the following minimization problem has a solution.

$$\min_{m \in M} \|x - m\|$$

(i.e., we can find the closest vector to x lying in the subspace M).

<u>Remark:</u> $m^* = x_1$ can be interpreted as the "best approximation" of x chosen from the vectors in M. Vector x_2 can be interpreted as the "error in the approximation". This error must be orthogonal to the subspace.

Computational aspects of the projection theorem: Suppose we are given a basis for M. That is, $M = Span(\{v_1, v_2, \dots v_k\})$. Given $x \in H \supset M$, we want to figure out $x_1 \in M$, where $x = x_1 + x_2$ for $x_2 \in M^{\perp}$. **Example:** Let H be the space of square integrable functions with domain $[\pi, \pi]$ with inner product $\langle f_1, f_2 \rangle = \int_{-\pi}^{\pi} f_1(t) \overline{f_2(t)} dt$. Let M be the subspace $M = Span\{\frac{e^{jkt}}{2\pi}\}_{k=-N}^N$. Note that dimension of M is 2N + 1 and the basis set is orthonormal.

$$\langle f_n, f_m \rangle = \int_{-\pi}^{\pi} e^{j(n-m)t} dt = \delta_{n,m}$$

Now, let $g \in H$ be an arbitrary vector (a function). Then $g = g_1 + g_2$, where $g_1 \in M$ and $g_2 \in M^{\perp}$.

Note that, $g_1(t)$ is the **best approximation** to g(t) within the subspace M. $g_1(t)$ turns out to be the finite Fourier series representation of g(t). As $N \to \infty$ we obtain the **Fourier series** representation.

<u>Special Case</u>: "Application of the projection theorem in \mathbb{C}^n ". Let $\{m_1, m_2, \ldots, m_k\}, k < n$ be a basis for a subspace M of \mathbb{C}^n . That is, $M = Span(\{m_1, m_2, \ldots, m_k\})$. Given an arbitrary vector $x \in \mathbb{C}^n$, we know that $x = x_1 + x_2$ with $x_1 \in M, x_2 \in M^{\perp}$. We also know that x_1 and x_2 are unique. Let $x_1 = \sum_{i=1}^k \alpha_i m_i$. Define matrix $B = [m_1 \ m_2 \ \ldots \ m_k]$ whose columns are basis vectors. Then we can write $x_1 = B\alpha$ for $\alpha = [\alpha_1, \ldots, \alpha_k]^T$.

<u>Remark:</u> An orthogonal projection matrix $P \in \mathbb{C}^{k \times k}$ satisfies:

- $P^* = P$
- $P^2 = P \Rightarrow P^i = P$ for all i = 1, 2, ...

<u>Remark</u>: In \mathbb{C}^n the standard inner product is $\langle x, y \rangle = y^* x$. In \mathbb{R}^n , this boils down to $\langle x, y \rangle = y^T x$

Example: "Orthogonal projection" Find the orthogonal projection of the vector 0

onto the subspace spanned by $\left\{ \begin{array}{c|c} 1 \\ 1 \\ 1 \end{array}, \begin{array}{c|c} -1 \\ 1 \end{array} \right\}$

3 Projection Theorem & Solution of Linear Equations

consider the linear equation expressed as

Ax = b where $A \in \mathbb{C}^{m \times n}$ & $b \in \mathbb{C}^{m \times 1}$ & $x \in \mathbb{C}^{n \times 1}$.

Is there a solution to x? If the answer is yes, is it unique?

Remark:

- A solution exists if and only if $b \in R(A)$.
- A solution is unique if and only if N(A) = 0.

Example: Let $A = [1 \ 1 \ 1 \ 1]^T$ and $b = [2.2 \ 1.9 \ 2.1 \ 1.8]^T$.

When there is no exact solution, one can try to find the "'best approximation"' to a solution. An approximation can be found by minimizing the norm of the error,

$$\min_{x \in \mathbb{C}^n} \|Ax - b\|^2$$

If a solution exists, then $||Ax - b||^2 = 0$, otherwise we can find an approximate solution

such that $\hat{x} = \arg \min_{x \in \mathbb{C}^n} \|Ax - b\|^2$.

Example: The length x of a metal rod is inaccurately measured four times and the results are recorded as l_1 , l_2 , l_3 , and l_4 . What is the best approximation to x?

Example: Consider the following scenario:

Remark: Suppose \hat{x} is a solution of $Ax = b_1$. Suppose that m is any vector in N(A), then $\hat{x} + m$ is another solution.

In the case of non-uniqueness, we are going to look for a solution with the minimum norm.

$$\min_{Ax=b_1} \|x\|$$

Let \hat{x}^a and \hat{x}^b be two solutions to Ax = b. We can decompose both solutions uniquely as:

Theorem $N(A)^{\perp} = R(A^*).$

Example: Consider the previous example:

Summary:

4 Special Cases of Ax = b

4.1 Columns of A form a linearly independent set

A is full-column rank.

4.2 Rows of A form a linearly independent set

A is full-row rank.

4.3 Both rows & columns of A form a linearly independent set

A is invertible.

5 Spectral Analysis of Linear Operators

Definition Let $A: V \to V$ be a linear transformation defined over the vector space V. A subspace M of V is said to be **invariant** under A if $A(x) \in M$ for all $x \in M$.

Example: R(A) is invariant under A.

Example: N(A) is invariant under A.

Definition Powers of a linear operator are defined as,

$$A^{k}(x) = \underbrace{A(A(\dots A(x) \dots))}_{A \text{ annlied } k \text{ times}}$$

By using the above definition polynomials of A can be constructed as linear combinations of powers of A.

Example: $P(A) = \alpha_0 A^n + \alpha_1 A^{n-1} + \ldots + \alpha_{n-1} A + \alpha_n I.$

Exercise: Show that R(P(A)) and N(P(A)) are invariant under A.

Definition Let A denote the matrix representation of a linear operator from V to V (A is a square matrix). The **eigenvalues** of A, denoted by λ_i , are defined as the n (n = dim V) roots of the equation det(sI-A)=0, where det(sI-A) is known as the **characteristic** polynomial of A.

Definition Vector(s) $e_i \in V$ satisfying $e_i \neq 0$ and $Ae_i = \lambda_i e_i$ is called the **eigenvec**tor(s) of A corresponding to eigenvalue λ_i .

Example: Let $A : \mathbb{C}^n \to \mathbb{C}^n$ and λ_i be an eigenvalue of A. $N(A - \lambda_i I)$ is invariant under A.

Proof:

Theorem Let $A \in \mathbb{C}^{n \times n}$ be the matrix representation of a linear transformation T: $\mathbb{C}^n \to \mathbb{C}^n$ with respect to the canonical basis. Suppose that,

- $\mathbb{C}^n = M_1 \oplus M_2 \oplus \ldots \oplus M_k$
- Each subspace M_i is invariant under T.

Let $dim(M_i) = n_i$ and M_i has a basis set $\{b_1^i, b_2^i, \dots, b_{n_i}^i\} =: B_i$. Then with respect to basis $\{b_1^1, b_2^1, \dots, b_{n_1}^1; b_1^2, b_2^2, \dots, b_{n_2}^2; \dots; b_1^k, b_2^k, \dots, b_{n_k}^k\}$, transformation T has a block diagonal matrix representation.

$$\bar{A} = \begin{bmatrix} \bar{A}_1 & 0 & \dots & 0 \\ 0 & \bar{A}_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \bar{A}_k \end{bmatrix},$$

where $\bar{A}_i \in \mathbb{C}^{n_i \times n_i}$. In particular, $\bar{A}_i = B^{-1}AB$, where $B \in \mathbb{C}^{n_i \times n_i}$ is given by $B = [B_1, B_2, \dots, B_{n_i}]$

Example: Let
$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -2 & -5 & -4 \end{bmatrix}$$
, $M_1 = Span \left\{ \begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} \right\}$, $M_2 = Span \left\{ \begin{bmatrix} 1 \\ -2 \\ 4 \end{bmatrix} \right\}$

- i) Is M_1 invariant under A?
- ii) Is M_2 invariant under A?
- iii) Find \overline{A} ?

Let A be an $n \times n$ matrix with n distinct eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$ Let e_1, e_2, \ldots, e_n be the eigenvectors corresponding to these eigen values, i.e., $Ae_i = \lambda_i e_i$, $i = 1, 2, \ldots, n$. **Claim:** The set of eigenvectors $\{e_1, e_2, \ldots, e_n\}$ form a linearly independent set.

Furthermore, $N(A - \lambda_i I) = Span(e_i)$ for all i.

Theorem "'Cayley-Hamilton"' Every $n \times n$ matrix satisfies its own characteristic equa-

tion, i.e., $d(A) = 0_{n \times n}$.

Example:

Proof (..continued)

Fact: Let $M \in \mathbb{C}^{n \times n}$. For each $\delta > 0$, there exists a matrix $\tilde{M} \in \mathbb{C}^{n \times n}$ with distinct eigenvalues satisfying $\|M - \tilde{M}\| < \delta$. This is equivalent to stating: "'Matrices with distinct eigenvalues form a dense subset of $\mathbb{C}^{n \times n}$ "'.

Fact: "'An example"', Assume $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ has repeated eigenvalues, i.e., $\lambda_1 = \lambda_2$. Then for each $\delta > 0$ one can find numbers $\epsilon_1, \epsilon_2, \epsilon_3, \epsilon_4$ satisfying $|\epsilon_i| < \delta$ such that $A_{\delta} = \begin{bmatrix} a + \epsilon_1 & b + \epsilon_2 \\ c + \epsilon_3 & d + \epsilon_4 \end{bmatrix}$ has distinct eigenvalues, i.e., $\lambda_1^{\delta} \neq \lambda_2^{\delta}$ Let us choose a sequence $\{A_n\}_{n=1}^{\infty}$ satisfying $||A - A_n|| < \frac{1}{n}$ and A_n has distinct eigenvalues.

Let us choose a sequence $(M_n)_{n=1}^n$ satisfying $||M - M_n|| < n$ and M_n has distinct eigenvarues. ues. Let us define $d_n(s) := det(sI - A_n)$. Since det(.) is a continuous function one can write $d(A) = \lim_{n \to \infty} d_n(A_n)$.

Note that $d_n(A_n) = 0$ for all n. Hence d(A)=0.

Example:

Example:

6 Minimal Polynomial

Definition For an $n \times n$ matrix A, the **minimal polynomial** m(s) is the monic polynomial with smallest degree such that $m(A) = 0_{n \times n}$

Remark: A monic polynomial has unity as the coefficient of its highest order term.

Theorem Given $A \in \mathbb{C}^{n \times n}$, let m(s) be its minimal polynomial.

- m(s) is unique;
- m(s) divides d(s), i.e., there exist a q(s) such that d(s) = m(s)q(s);
- Every root of d(s) is also a root of m(s).

Example:
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$

Example: "'repeated eigenvalues"'

i) $A_1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{bmatrix}$ ii) $A_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{bmatrix}$

Remark:

$$d(s) = (s - \lambda_1)^{r_1} (s - \lambda_2)^{r_2} \dots (s - \lambda_\sigma)^{r_\sigma},$$
$$m(s) = (s - \lambda_1)^{m_1} (s - \lambda_2)^{m_2} \dots (s - \lambda_\sigma)^{m_\sigma},$$

where $m_i \leq r_i$ and $i = 1, 2, \ldots, \sigma$.

 r_i : algebraic multiplicity of λ_i .

 m_i : geometric multiplicity of λ_i .

Let $N_i := N(A - \lambda_i I)^{m_i}$. Then,

$$\mathbb{C}^n = N_1 \oplus N_2 \oplus \dots N_{\sigma}$$

Furthermore, $dim(N_i) = r_i$ hence $n = r_1 + r_2 + \ldots + r_{\sigma}$.

Theorem $N(A - \lambda_i I) \subset_{\neq} N(A - \lambda_i I)^2 \subset_{\neq} ... \subset_{\neq} N(A - \lambda_i I)^{k_i} = N(A - \lambda_i I)^{k_i + 1}$ for some $k_i \geq 1$.

Theorem .

- $k_i = m_i$
- $dim(N(A \lambda_i I)^{m_i}) = r_i$

Example:
$$A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix}$$

Example:
$$A = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix}$$

Remark: Let A be an $n \times n$ matrix and \overline{A} be its Jordan canonical form.

- $\bar{A} = B^{-1}AB$, where B is invertible.
- $\operatorname{rank}(A) = \operatorname{rank}(BA) = \operatorname{rank}(AB) = \operatorname{rank}(\bar{A})$
- $dim(N(A \lambda_i I)) = dim(N(\bar{A} \lambda_i I))$

where the last remark follows from the previous ones and the following:

$$B^{-1}(A - \lambda_i I)B = B^{-1}AB - \lambda_i IB^{-1}B = \overline{A} - \lambda_i$$

We already know that $\mathbb{C}^n = N((A - \lambda_1 I)^{m_1}) \oplus N((A - \lambda_2 I)^{m_2}) \oplus \ldots \oplus N((A - \lambda_\sigma I)^{m_\sigma}).$ The transformation matrix B can be written as $B = [B_1 \quad B_2 \quad \ldots \quad B_\sigma]$, where columns of B_i span $N((A - \lambda_i I)^{m_i}).$

Our next aim is to construct $B_i \in \mathbb{C}^{n \times r_i}$ whose columns span $N((A - \lambda_i I)^{m_i})$ and $r_i \times r_i$ block \bar{A}_i satisfies $AB_i = B_i \bar{A}_i$.

Let $M_i := A - \lambda_i I$, and let's choose a vector x such that $x \in N(M_i^{m_i})$, but $x \notin N(M_i^{m_i-1})$. Now consider the chain of vectors:

$$\{M_i^{m_i-1}x, \quad M_i^{m_i-2}x, \quad \dots, \quad M_ix, \quad x\}$$

Claim: The set $\{M_i^{m_i-1}x, M_i^{m_i-2}x, \ldots, M_ix, x\}$ is linearly independent.

Proof:

Special cases:

i) A has a single eigenvalue λ_i , and $m_i = r_i$.

ii) A has a single eigenvalue λ_i , and $m_i = 1$.

7 Hermitian Matrices

Definition An $n \times n$ complex matrix A is called **Hermitian** if $A^* = A$, i.e., its conjugate transpose is equal to itself. If A is a real matrix then $A^* = A^T$.¹

Hermitian matrices enjoys important properties.

Theorem Let A be Hermitian, then $\langle x, Ax \rangle$ is real for all $x \in \mathbb{C}^n$

Proof:

Theorem All eigenvalues of a Hermitian matrix are real.

Proof:

¹In some books, conjugate transpose is denoted by A^H instead of A^* .

Theorem Eigenvectors of Hermitian matrices are orthogonal. Let A be Hermitian and λ_i , λ_j be two distinct ($\lambda_i \neq \lambda_j$) eigenvalues with eigenvectors e_i , e_j , then $\langle e_i, e_j \rangle = 0$.

Proof:

Theorem Let A be Hermitian. Then its minimal polynomial is

$$m(s) = (s - \lambda_1)(s - \lambda_2) \dots (s - \lambda_{\sigma}).$$

That is, $m_i = 1$ for all eigenvalues of Hermitian matrices.

Proof:

Therefore for a Hermitian matrice A with characteristic polynomial

 $d(s) = (s - \lambda_1)^{r_1} (s - \lambda_2)^{r_2} \dots (s - \lambda_\sigma)^{r_\sigma}$, we can write

$$\mathbb{C}^{n} = N(A - \lambda_{1}I) \stackrel{\perp}{\oplus} N(A - \lambda_{2}I) \stackrel{\perp}{\oplus} \dots \stackrel{\perp}{\oplus} N(A - \lambda_{\sigma}I) \stackrel{\perp}{\oplus} \dots \stackrel{\perp}{\oplus} N(A - \lambda_{\sigma}I) \stackrel{\perp}{\to} \dots \stackrel{\perp}{\to} \dots \stackrel{\perp}{\to} N(A - \lambda_{\sigma}I) \stackrel{\perp}{\to} \dots \stackrel{\perp}{\to} \dots \stackrel{\perp}{\to} N(A - \lambda_{\sigma}I) \stackrel{\perp}{\to} \dots \stackrel{\to$$

Theorem Let A be a Hermitian matrice with characteristic polynomial

 $d(s) = (s - \lambda_1)^{r_1} (s - \lambda_2)^{r_2} \dots (s - \lambda_{\sigma})^{r_{\sigma}}$. Then there exist a unitary matrix P, i.e., $P^{-1} = P^*$ such that $P^*AP = \Lambda$ where

$$\Lambda = \begin{bmatrix} \Lambda_1 & 0 & \dots & 0 \\ 0 & \Lambda_2 & & \vdots \\ \vdots & & \ddots & 0 \\ 0 & \dots & 0 & \Lambda_\sigma \end{bmatrix} and each \quad \Lambda_i \quad is \ r_i \times r_i, \quad \Lambda_i = \begin{bmatrix} \lambda_i & 0 & \dots & 0 \\ 0 & \lambda_i & & \vdots \\ \vdots & & \ddots & 0 \\ 0 & \dots & 0 & \lambda_i \end{bmatrix}$$

Proof:

Theorem Let A be an $n \times n$ Hermitian matrix with eigen values $\lambda_1, \lambda_2, \ldots, \lambda_{\sigma}$. Let $\lambda_{min} := \min_i \lambda_i \text{ and } \lambda_{max} := \max_i \lambda_i$. Then for all $x \in \mathbb{C}^n$ we have,

$$\lambda_{\min} \langle x, x \rangle \le \langle x, Ax \rangle \le \lambda_{\max} \langle x, x \rangle$$

Proof:

Recall that $\mathbb{C}^n = N(A - \lambda_1 I) \stackrel{\perp}{\oplus} N(A - \lambda_2 I) \stackrel{\perp}{\oplus} \dots \stackrel{\perp}{\oplus} N(A - \lambda_\sigma I)$. Then for a given x we

can write $x = x_1 + x_2 + \ldots + x_{\sigma}$ with $x_i \in N(A - \lambda_i I)$. Then

$$\langle x, Ax \rangle = \left\langle \sum_{i=1}^{\sigma} x_i, A \sum_{j=1}^{\sigma} x_j \right\rangle$$

$$= \left\langle \sum_{i=1}^{\sigma} x_i, \sum_{j=1}^{\sigma} Ax_j \right\rangle$$

$$= \left\langle \sum_{i=1}^{\sigma} x_i, \sum_{j=1}^{\sigma} \lambda_j x_j \right\rangle$$

$$= \sum_{i=1}^{\sigma} \left\langle x_i, \sum_{j=1}^{\sigma} \lambda_j x_j \right\rangle$$

$$= \sum_{i=1}^{\sigma} \left\langle x_i, \lambda_i x_i \right\rangle$$

$$= \sum_{i=1}^{\sigma} \lambda_i \left\langle x_i, x_i \right\rangle$$

$$\Rightarrow \lambda_{min} \left\langle x, x \right\rangle \le \left\langle x, Ax \right\rangle \le \lambda_{max} \left\langle x, x \right\rangle$$

Definition A Hermitian matrix A is said to be **positive definite** if $\langle x, Ax \rangle > 0$ for all $x \neq 0$.²

Theorem If A is a positive definite Hermitian matrix, then all of its eigenvalues are positive.

Proof:

²A Hermitian matrix A is said to be **positive semi-definite** if $\langle x, Ax \rangle \ge 0$ for all $x \neq 0$.

8 Functions of a Matrix

The basic motivation to study matrix-valued functions comes from the differential equations describing linear systems³

$$\dot{x}(t) = Ax(t),$$

and its solution

$$x(t) = e^{At}x(0)$$

Definition Consider a scalar valued function f(s) with the following power series expansion:

$$f(s) = \sum_{i=0}^{\infty} \alpha_i s^i$$

The matrix valued function f(A) is defined as,

$$f(A) := \sum_{i=0}^{\infty} \alpha_i A^i,$$

which is another matrix with the same size as A.

Example:

$$e^t = \sum_{i=0}^{\infty} \frac{t^i}{i!} \qquad \Rightarrow \quad e^A := \sum_{i=0}^{\infty} \frac{A^i}{i!}$$

By using Cayley Hamlton theorem, we can express n^{th} or higher orders of an $n \times n$ matrix as a linear combination of its lower powers: $I, A, A^2, \ldots, A^{n-1}$. Then e^A can be expressed as,

$$e^{A} = c_{0} + c_{1}A + c_{2}A^{2} + \ldots + c_{n-1}A^{n-1}.$$

 $^{^{3}}$ Motivation to pass this course is neglected in this statement.

Similarly, one can use the minimal polynomial of a matrix to express the l^{th} power of an $n \times n$ matrix as a linear combination of its lower powers: $I, A, A^2, \ldots, A^{l-1}$, where l is the order of its minimal polynomial. In that case we can write,

$$e^{A} = c_{0} + c_{1}A + c_{2}A^{2} + \ldots + c_{l-1}A^{l-1}$$

Since $l \leq n$, in general it is easier to find the *l* coefficients of the above equation. Next, we will deal with the problem of finding the unknown coefficients.

8.1 First Method

Let

$$f(s) = \sum_{i=0}^{\infty} \alpha_i s^i$$

and

$$f(A) = \sum_{i=0}^{\infty} \alpha_i A^i.$$

Let us define p(s) and p(A) as follows,

$$p(s) = c_0 + c_1 s + c_2 s^2 + \ldots + c_{l-1} s^{l-1},$$

$$p(A) = c_0 + c_1 A + c_2 A^2 + \ldots + c_{l-1} A^{l-1}.$$

Then we have the equality

$$f(A) = p(A).$$

<u>Case 1:</u> Matrix A is diagonalizable. Suppose $m(s) = (s - \lambda_1)(s - \lambda_2) \dots (s - \lambda_{\sigma})$, i.e., $l = \sigma$ and $m_1 = m_2 = \dots = m_{\sigma} = 1$.

 \Rightarrow we have $f(\lambda_j) = p(\lambda_j)$ for j = 1, ..., l which results in l equations for l unknowns $c_0, c_1, ..., c_{l-1}$.

Example:
$$A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$$
, find e^A and $\log(A)$.

<u>Case 2:</u> Matrix A is not diagonalizable.

Consider the following example. Let $A \in \mathbb{R}^3$ and $m(s) = (s - \lambda_1)^2 (s - \lambda_2)$. Let the Jordan canonical form of A be equal to $J = \begin{bmatrix} \lambda_1 & 1 & 0 \\ 0 & \lambda_1 & 0 \\ 0 & 0 & \lambda_2 \end{bmatrix}$. Then, $f(A) = c_0 + c_1 A + c_2 A^2 = p(A)$

$$f(\lambda_1) = p(\lambda_1)$$
$$f(\lambda_2) = p(\lambda_2)$$

These two equations are not enough to find the three unknowns c_0, c_1 , and c_2 .

Consider the matrix P, which transforms the matrix A into its Jordan canonical form, i.e., $J = P^{-1}AP$. We know that P has the following form: $P = \begin{bmatrix} e_1 & f_1 & e_2 \\ e_1, e_2 & e_1, e_2 & e_2 \end{bmatrix}$, where e_1, e_2 are eigenvectors corresponding to λ_1 and λ_2 respectively and f_1 is a generalized eigenvector for λ_1 . Notice that,

$$\begin{bmatrix} e_1 & f_1 & e_1 \end{bmatrix} \begin{bmatrix} \lambda_1 & 1 & 0 \\ 0 & \lambda_1 & 0 \\ 0 & 0 & \lambda_2 \end{bmatrix} = A[e_1 & f_1 & e_1]$$

$$\Rightarrow \qquad Af_1 = \lambda_1 f_1 + e_1$$

$$A^2 f_1 = \lambda_1 A f_1 + A e_1$$

$$= \lambda_1 (\lambda_1 f_1 + e_1) + \lambda_1 e_1 = \lambda_1^2 f_1 + 2\lambda_1 e_1$$

$$A^3 f_1 = \lambda_1^2 A f_1 + 2\lambda_1 A e_1 = \lambda_1^3 f_1 + 3\lambda_1^2 e_1$$

$$\vdots$$

$$A^i f_1 = \lambda_1^i f_1 + i\lambda_1^{i-1} e_1$$

Returning back to the equation,

$$f(A) = p(A)$$
$$\sum_{i=0}^{\infty} \alpha_i A^i = \sum_{i=0}^{l-1} c_i A^i$$

and multiplying both sides by $f_1 \ensuremath{\, {\rm from \ right \ results}},$

$$\sum_{i=0}^{\infty} \alpha_i A^i f_1 = \sum_{i=0}^{l-1} c_i A^i f_1$$
$$\sum_{i=0}^{\infty} \alpha_i (\lambda_1^i f_1 + i\lambda_1^{i-1} e_1) = \sum_{i=0}^{l-1} c_i (\lambda_1^i f_1 + i\lambda_1^{i-1} e_1)$$
$$\Rightarrow \qquad f(\lambda_1) f_1 + f'(\lambda_1) e_1 = p(\lambda_1) f_1 + p'(\lambda_1) e_1.$$

Since $f(\lambda_1) = p(\lambda_1)$, we have

$$f'(\lambda_1)e_1 = p'(\lambda_1)e_1.$$

Since $e_i \neq 0$ we have

$$f'(\lambda_1) = p'(\lambda_1),$$

which is the additional equation needed to find the coefficients $c_0, c_1, \ldots, c_{l-1}$ of p(A).

General case:

Let $m(s) = (s - \lambda_1)^{m_1} (s - \lambda_2)^{m_2} \dots (s - \lambda_{\sigma})^{m_{\sigma}}$, we have the following set of equations to find the coefficients c_0, c_1, \dots, c_{l-1} of p(A):

$$f^{(t)}(\lambda_j) = p^{(t)}(\lambda_j), \text{ for } j = 1, \dots, \sigma \qquad t = 0, \dots, m_j - 1,$$

where t denotes the derivative order.

Remark:

f(A) does not exist when $f^{(t)}(\lambda_j)$ $j = 1, ..., \sigma,$ $t = 0, ..., m_j - 1$, does not exist.

Example:
$$A = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$
. Consider $f_1(s) = \log(s)$ and $f_2(s) = (1-s)^{-1}$.

 $\lambda_1 = 0, \ \lambda_2 = 1, \Rightarrow m(s) = s(s-1)$

 $\log(A)$ and $(I - A)^{-1}$ do not exist since $f_1(\lambda_1)$ and $f_2(\lambda_2)$ do not exist.

9 Function of a Matrix Given Its Jordan Form