Chapter 2

January 6, 2017

1 Direct Sum

Definition Let V be a vector space and let $M_{1}, M_{2}, \ldots, M_{k}$ are subspaces of V. The sum of these subspaces M is defined as

$$
M=\left\{m \in V: \quad m=m_{1}+m_{2}+\ldots+m_{k} \quad \text { where } m_{i} \in M_{i}, \quad i=1,2, \ldots, k\right\} .
$$

Theorem The sum of subspaces is also a subspace of V.

Proof:

Definition Let $M_{1}, M_{2}, \ldots, M_{k}$ be subspaces of a vector space V. These subspaces are
said to be linearly independent if,

$$
\begin{aligned}
& m=m_{1}+m_{2}+\ldots+m_{k}=0, \quad \text { where } m_{i} \in M_{i} \quad \text { implies } \\
& m_{1}=m_{2}=\ldots=m_{k}=0 \quad \text { for } \quad i=1,2, \ldots, k
\end{aligned}
$$

Definition Let $M_{1}, M_{2}, \ldots, M_{k}$ be subspaces of a vector space and also let

- $M=M_{1}+M_{2}+\ldots+M_{k}$
- $M_{1}, M_{2}, \ldots, M_{k}$ are linearly independent

Then M is said to be the direct sum of subspaces $M_{1}, M_{2}, \ldots, M_{k}$ and denoted by $M=M_{1} \oplus M_{2} \oplus \ldots \oplus M_{k}$

Definition If $M=V$ (the linear space itself) then $V=M_{1} \oplus M_{2} \oplus \ldots \oplus M_{k}$ is called the direct sum decomposition of V.

Example: Let $\mathrm{V}=\mathbb{R}^{4}, x=\left[x_{1}, x_{2}, x_{3}, x_{4}\right]^{T} \in \mathbb{R}$.

Definition Let V be an inner product space. Two subspaces M_{1} and M_{2} are said to be orthogonal if,

$$
\left\langle m_{1}, m_{2}\right\rangle=0 \quad \forall m_{1} \in M_{1}, m_{2} \in M_{2} .
$$

Orthogonality is denoted as $M_{1} \perp M_{2}$

Definition Let $M=M_{1} \oplus M_{2} \oplus \ldots \oplus M_{k}$ and let $M_{i} \perp M_{i}$ for all $i \neq j$. Then M is said to be orthogonal direct sum of subspaces $M_{1}, M_{2}, \ldots, M_{k}$.

Symbolically,

Definition Let M be a subspace of an inner product space V. The orthogonal complement M^{\perp} of the subspace M is defined as

$$
M^{\perp}:=\{x \in V:\langle x, m\rangle=0 \forall m \in M\} .
$$

Theorem M^{\perp} is itself a subspace.

Proof:

Example: $V=\mathbb{R}^{3}, M=\operatorname{Span}\left(\left\{\left[\begin{array}{c}0 \\ -1 \\ 1\end{array}\right],\left[\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right]\right\}\right), \quad M^{\perp}=$?

Theorem Let V be an inner product space and M is a subspace of $V . V$ can always be written as the direct sum of a subspace and its orthogonal complement, i.e., we always have $\quad V=M \oplus M^{\perp}$.

Proof:

2 Projection Theorem

Theorem"Projection Theorem"
Let H be a Hilbert space (inner product space, complete w.r.t the norm induced by the inner product) and let M be a finite dimensional subspace of H. For any $x \in H$, the following minimization problem has a solution.

$$
\min _{m \in M}\|x-m\|
$$

(i.e., we can find the closest vector to x lying in the subspace M).

Proof:

Remark: $m^{*}=x_{1}$ can be interpreted as the "best approximation" of x chosen from the vectors in M. Vector x_{2} can be interpreted as the "error in the approximation". This error must be orthogonal to the subspace.

Computational aspects of the projection theorem: Suppose we are given a basis for M. That is, $M=\operatorname{Span}\left(\left\{v_{1}, v_{2}, \ldots v_{k}\right\}\right)$. Given $x \in H \supset M$, we want to figure out $x_{1} \in M$, where $x=x_{1}+x_{2}$ for $x_{2} \in M^{\perp}$.

Example: Let H be the space of square integrable functions with domain $[\pi, \pi]$ with inner product $\left\langle f_{1}, f_{2}\right\rangle=\int_{-\pi}^{\pi} f_{1}(t) \overline{f_{2}(t)} d t$. Let M be the subspace $M=\operatorname{Span}\left\{\frac{e^{j k t}}{2 \pi}\right\}_{k=-N}^{N}$. Note that dimension of M is $2 N+1$ and the basis set is orthonormal.

$$
\left\langle f_{n}, f_{m}\right\rangle=\int_{-\pi}^{\pi} e^{j(n-m) t} d t=\delta_{n, m}
$$

Now, let $g \in H$ be an arbitrary vector (a function). Then $g=g_{1}+g_{2}$, where $g_{1} \in M$ and $g_{2} \in M^{\perp}$.

Note that, $g_{1}(t)$ is the best approximation to $g(t)$ within the subspace $M . g_{1}(t)$ turns out to be the finite Fourier series representation of $g(t)$. As $N \rightarrow \infty$ we obtain the Fourier series representation.

Special Case: "Application of the projection theorem in \mathbb{C}^{n} ". Let $\left\{m_{1}, m_{2}, \ldots, m_{k}\right\}, k<n$ be a basis for a subspace M of \mathbb{C}^{n}. That is, $M=\operatorname{Span}\left(\left\{m_{1}, m_{2}, \ldots, m_{k}\right\}\right)$. Given an arbitrary vector $x \in \mathbb{C}^{n}$, we know that $x=x_{1}+x_{2}$ with $x_{1} \in M, x_{2} \in M^{\perp}$. We also know that x_{1} and x_{2} are unique. Let $x_{1}=\sum_{i=1}^{k} \alpha_{i} m_{i}$. Define matrix $B=\left[\begin{array}{llll}m_{1} & m_{2} & \ldots & m_{k}\end{array}\right]$
whose columns are basis vectors. Then we can write $x_{1}=B \alpha$ for $\alpha=\left[\alpha_{1}, \ldots, \alpha_{k}\right]^{T}$.

Remark: An orthogonal projection matrix $P \in \mathbb{C}^{k \times k}$ satisfies:

- $P^{*}=P$
- $P^{2}=P \Rightarrow P^{i}=P$ for all $i=1,2, \ldots$

Remark: In \mathbb{C}^{n} the standard inner product is $\langle x, y\rangle=y^{*} x$. In \mathbb{R}^{n}, this boils down to $\langle x, y\rangle=y^{T} x$

Example: "Orthogonal projection" Find the orthogonal projection of the vector onto the subspace spanned by $\left\{\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{c}1 \\ -1 \\ 1\end{array}\right]\right\}$

3 Projection Theorem \& Solution of Linear Equa-
 tions

consider the linear equation expressed as

$$
A x=b \quad \text { where } A \in \mathbb{C}^{m \times n} \quad \& \quad b \in \mathbb{C}^{m \times 1} \quad \& \quad x \in \mathbb{C}^{n \times 1}
$$

Is there a solution to x ? If the answer is yes, is it unique?

Remark:

- A solution exists if and only if $b \in R(A)$.
- A solution is unique if and only if $N(A)=0$.

Example: Let $A=\left[\begin{array}{llll}1 & 1 & 1 & 1\end{array}\right]^{T}$ and $b=\left[\begin{array}{llll}2.2 & 1.9 & 2.1 & 1.8\end{array}\right]^{T}$.

When there is no exact solution, one can try to find the "'best approximation"' to a solution. An approximation can be found by minimizing the norm of the error,

$$
\min _{x \in \mathbb{C}^{n}}\|A x-b\|^{2}
$$

If a solution exists, then $\|A x-b\|^{2}=0$, otherwise we can find an approximate solution
such that $\hat{x}=\arg \min _{x \in \mathbb{C}^{n}}\|A x-b\|^{2}$.

Example: The length x of a metal rod is inaccurately measured four times and the results are recorded as l_{1}, l_{2}, l_{3}, and l_{4}. What is the best approximation to x ?

Example: Consider the following scenario:

Remark: Suppose \hat{x} is a solution of $A x=b_{1}$. Suppose that m is any vector in $N(A)$, then $\hat{x}+m$ is another solution.

In the case of non-uniqueness, we are going to look for a solution with the minimum norm.

$$
\min _{A x=b_{1}}\|x\|
$$

Let \hat{x}^{a} and \hat{x}^{b} be two solutions to $A x=b$. We can decompose both solutions uniquely as:

Theorem $N(A)^{\perp}=R\left(A^{*}\right)$.

Proof:

Example: Consider the previous example:

Summary:

4 Special Cases of $A x=b$

4.1 Columns of \mathbf{A} form a linearly independent set

A is full-column rank.

4.2 Rows of A form a linearly independent set

A is full-row rank.
4.3 Both rows \& columns of A form a linearly independent set

A is invertible.

5 Spectral Analysis of Linear Operators

Definition Let $A: V \rightarrow V$ be a linear transformation defined over the vector space V. A subspace M of V is said to be invariant under A if $A(x) \in M$ for all $x \in M$.

Example: $\mathrm{R}(\mathrm{A})$ is invariant under A.

Example: N(A) is invariant under A.

Definition Powers of a linear operator are defined as,

$$
A^{k}(x)=\underbrace{A(A(\ldots A(x) \ldots))}_{A \text { applied } k \text { times }}
$$

By using the above definition polynomials of A can be constructed as linear combinations of powers of A.

Example: $P(A)=\alpha_{0} A^{n}+\alpha_{1} A^{n-1}+\ldots+\alpha_{n-1} A+\alpha_{n} I$.

Exercise: Show that $R(P(A))$ and $N(P(A))$ are invariant under A.

Definition Let A denote the matrix representation of a linear operator from V to V (A is a square matrix). The eigenvalues of A, denoted by λ_{i}, are defined as the n ($n=\operatorname{dim}$ $V)$ roots of the equation $\operatorname{det}(s I-A)=0$, where $\operatorname{det}(s I-A)$ is known as the characteristic polynomial of A.

Definition Vector(s) $e_{i} \in V$ satisfying $e_{i} \neq 0$ and $A e_{i}=\lambda_{i} e_{i}$ is called the eigenvec$\boldsymbol{\operatorname { t o r }}(s)$ of A corresponding to eigenvalue λ_{i}.

Example: Let $A: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ and λ_{i} be an eigenvalue of A. $N\left(A-\lambda_{i} I\right)$ is invariant under A.

Proof:

Theorem Let $A \in \mathbb{C}^{n \times n}$ be the matrix representation of a linear transformation T : $\mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ with respect to the canonical basis. Suppose that,

- $\mathbb{C}^{n}=M_{1} \oplus M_{2} \oplus \ldots \oplus M_{k}$
- Each subspace M_{i} is invariant under T.

Let $\operatorname{dim}\left(M_{i}\right)=n_{i}$ and M_{i} has a basis set $\left\{b_{1}^{i}, b_{2}^{i}, \ldots, b_{n_{i}}^{i}\right\}=: B_{i}$. Then with respect to basis $\left\{b_{1}^{1}, b_{2}^{1}, \ldots, b_{n_{1}}^{1} ; \quad b_{1}^{2}, b_{2}^{2}, \ldots, b_{n_{2}}^{2} ; \quad \ldots \quad ; b_{1}^{k}, b_{2}^{k}, \ldots, b_{n_{k}}^{k}\right\}$,transformation T has a block
diagonal matrix representation.

$$
\bar{A}=\left[\begin{array}{cccc}
\bar{A}_{1} & 0 & \ldots & 0 \\
0 & \bar{A}_{2} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & \bar{A}_{k}
\end{array}\right],
$$

where $\bar{A}_{i} \in \mathbb{C}^{n_{i} \times n_{i}}$. In particular, $\bar{A}_{i}=B^{-1} A B$, where $B \in \mathbb{C}^{n_{i} \times n_{i}}$ is given by $B=$ $\left[B_{1}, B_{2}, \ldots, B_{n_{i}}\right]$

Proof:

Example: Let $A=\left[\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & 1 \\ -2 & -5 & -4\end{array}\right], M_{1}=\operatorname{Span}\left\{\left[\begin{array}{c}-2 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right]\right\}, M_{2}=\operatorname{Span}\left\{\left[\begin{array}{c}1 \\ -2 \\ 4\end{array}\right]\right\}$
i) Is M_{1} invariant under A ?
ii) Is M_{2} invariant under A ?
iii) Find \bar{A} ?

Let A be an $n \times n$ matrix with n distinct eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ Let $e_{1}, e_{2}, \ldots, e_{n}$ be the eigenvectors corresponding to these eigen values, i.e., $A e_{i}=\lambda_{i} e_{i}, i=1,2, \ldots, n$. Claim: The set of eigenvectors $\left\{e_{1}, \quad e_{2}, \ldots, e_{n}\right\}$ form a linearly independent set. Furthermore, $N\left(A-\lambda_{i} I\right)=\operatorname{Span}\left(e_{i}\right)$ for all i.

Proof:

Theorem "'Cayley-Hamilton"' Every $n \times n$ matrix satisfies its own characteristic equation, i.e., $d(A)=0_{n \times n}$.

Example:

Proof:

Proof (..continued)

Fact: Let $M \in \mathbb{C}^{n \times n}$. For each $\delta>0$, there exists a matrix $\tilde{M} \in \mathbb{C}^{n \times n}$ with distinct eigenvalues satisfying $\|M-\tilde{M}\|<\delta$. This is equivalent to stating: "'Matrices with distinct eigenvalues form a dense subset of $\mathbb{C}^{n \times n}$ ".
Fact: "'An example", Assume $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ has repeated eigenvalues, i.e., $\lambda_{1}=\lambda_{2}$. Then for each $\delta>0$ one can find numbers $\epsilon_{1}, \epsilon_{2}, \epsilon_{3}, \epsilon_{4}$ satisfying $\left|\epsilon_{i}\right|<\delta$ such that $A_{\delta}=\left[\begin{array}{ll}a+\epsilon_{1} & b+\epsilon_{2} \\ c+\epsilon_{3} & d+\epsilon_{4}\end{array}\right]$ has distinct eigenvalues, i.e., $\lambda_{1}^{\delta} \neq \lambda_{2}^{\delta}$
Let us choose a sequence $\left\{A_{n}\right\}_{n=1}^{\infty}$ satisfying $\left\|A-A_{n}\right\|<\frac{1}{n}$ and A_{n} has distinct eigenvalues. Let us define $d_{n}(s):=\operatorname{det}\left(s I-A_{n}\right)$. Since $\operatorname{det}($.$) is a continuous function one can$ write $d(A)=\lim _{n \rightarrow \infty} d_{n}\left(A_{n}\right)$.

Note that $d_{n}\left(A_{n}\right)=0$ for all n . Hence $\mathrm{d}(\mathrm{A})=0$.

Example:

Example:

6 Minimal Polynomial

Definition For an $n \times n$ matrix A, the minimal polynomial $m(s)$ is the monic polynomial with smallest degree such that $m(A)=0_{n \times n}$

Remark: A monic polynomial has unity as the coefficient of its highest order term.

Theorem Given $A \in \mathbb{C}^{n \times n}$, let $m(s)$ be its minimal polynomial.

- $m(s)$ is unique;
- $m(s)$ divides $d(s)$, i.e., there exist a $q(s)$ such that $d(s)=m(s) q(s)$;
- Every root of $d(s)$ is also a root of $m(s)$.

Proof:

Example: $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3\end{array}\right]$

Example: "'repeated eigenvalues"
i) $A_{1}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2\end{array}\right]$
ii) $A_{2}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2\end{array}\right]$

Remark:

$$
\begin{aligned}
d(s) & =\left(s-\lambda_{1}\right)^{r_{1}}\left(s-\lambda_{2}\right)^{r_{2}} \ldots\left(s-\lambda_{\sigma}\right)^{r_{\sigma}} \\
m(s) & =\left(s-\lambda_{1}\right)^{m_{1}}\left(s-\lambda_{2}\right)^{m_{2}} \ldots\left(s-\lambda_{\sigma}\right)^{m_{\sigma}}
\end{aligned}
$$

where $m_{i} \leq r_{i}$ and $i=1,2, \ldots, \sigma$.
r_{i} : algebraic multiplicity of λ_{i}.
m_{i} : geometric multiplicity of λ_{i}.

Let $N_{i}:=N\left(A-\lambda_{i} I\right)^{m_{i}}$. Then,

$$
\mathbb{C}^{n}=N_{1} \oplus N_{2} \oplus \ldots N_{\sigma}
$$

Furthermore, $\operatorname{dim}\left(N_{i}\right)=r_{i}$ hence $n=r_{1}+r_{2}+\ldots+r_{\sigma}$.

Theorem $N\left(A-\lambda_{i} I\right) \subset_{\neq} N\left(A-\lambda_{i} I\right)^{2} \subset_{\neq} \ldots \subset_{\neq} N\left(A-\lambda_{i} I\right)^{k_{i}}=N\left(A-\lambda_{i} I\right)^{k_{i}+1}$ for some $k_{i} \geq 1$.

Theorem

- $k_{i}=m_{i}$
- $\operatorname{dim}\left(N\left(A-\lambda_{i} I\right)^{m_{i}}\right)=r_{i}$

Example: $A=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 2\end{array}\right]$

Example: $A=\left[\begin{array}{llll}1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 2\end{array}\right]$

Example:

Remark: Let A be an $n \times n$ matrix and \bar{A} be its Jordan canonical form.

- $\bar{A}=B^{-1} A B$, where B is invertible.
- $\operatorname{rank}(A)=\operatorname{rank}(B A)=\operatorname{rank}(A B)=\operatorname{rank}(\bar{A})$
- $\operatorname{dim}\left(N\left(A-\lambda_{i} I\right)\right)=\operatorname{dim}\left(N\left(\bar{A}-\lambda_{i} I\right)\right)$
where the last remark follows from the previous ones and the following:

$$
B^{-1}\left(A-\lambda_{i} I\right) B=B^{-1} A B-\lambda_{i} I B^{-1} B=\bar{A}-\lambda_{i} .
$$

We already know that $\mathbb{C}^{n}=N\left(\left(A-\lambda_{1} I\right)^{m_{1}}\right) \oplus N\left(\left(A-\lambda_{2} I\right)^{m_{2}}\right) \oplus \ldots \oplus N\left(\left(A-\lambda_{\sigma} I\right)^{m_{\sigma}}\right)$. The transformation matrix B can be written as $B=\left[\begin{array}{llll}B_{1} & B_{2} & \ldots & B_{\sigma}\end{array}\right]$, where columns of $B_{i} \operatorname{span} N\left(\left(A-\lambda_{i} I\right)^{m_{i}}\right)$.

Our next aim is to construct $B_{i} \in \mathbb{C}^{n \times r_{i}}$ whose columns span $N\left(\left(A-\lambda_{i} I\right)^{m_{i}}\right)$ and $r_{i} \times r_{i}$ block \bar{A}_{i} satisfies $A B_{i}=B_{i} \bar{A}_{i}$.

Let $M_{i}:=A-\lambda_{i} I$, and let's choose a vector x such that $x \in N\left(M_{i}^{m_{i}}\right)$, but $x \notin N\left(M_{i}^{m_{i}-1}\right)$. Now consider the chain of vectors:

$$
\left\{M_{i}^{m_{i}-1} x, \quad M_{i}^{m_{i}-2} x, \quad \ldots, \quad M_{i} x, \quad x\right\}
$$

Claim: The set $\left\{M_{i}^{m_{i}-1} x, \quad M_{i}^{m_{i}-2} x, \ldots, \quad M_{i} x, \quad x\right\}$ is linearly independent.

Proof:

Example:

Special cases:

i) A has a single eigenvalue λ_{i}, and $m_{i}=r_{i}$.
ii) A has a single eigenvalue λ_{i}, and $m_{i}=1$.

Example:

Example:

Example:

7 Hermitian Matrices

Definition $A n n \times n$ complex matrix A is called Hermitian if $A^{*}=A$, i.e., its conjugate transpose is equal to itself. If A is a real matrix then $A^{*}=A^{T} .{ }^{1}$

Hermitian matrices enjoys important properties.

Theorem Let A be Hermitian, then $\langle x, A x\rangle$ is real for all $x \in \mathbb{C}^{n}$

Proof:

Theorem All eigenvalues of a Hermitian matrix are real.

Proof:

[^0]Theorem Eigenvectors of Hermitian matrices are orthogonal. Let A be Hermitian and λ_{i}, λ_{j} be two distinct $\left(\lambda_{i} \neq \lambda_{j}\right)$ eigenvalues with eigenvectors e_{i}, e_{j}, then $\left\langle e_{i}, e_{j}\right\rangle=0$.

Proof:

Theorem Let A be Hermitian. Then its minimal polynomial is

$$
m(s)=\left(s-\lambda_{1}\right)\left(s-\lambda_{2}\right) \ldots\left(s-\lambda_{\sigma}\right) .
$$

That is, $m_{i}=1$ for all eigenvalues of Hermitian matrices.

Proof:

Therefore for a Hermitian matrice A with characteristic polynomial $d(s)=\left(s-\lambda_{1}\right)^{r_{1}}\left(s-\lambda_{2}\right)^{r_{2}} \ldots\left(s-\lambda_{\sigma}\right)^{r_{\sigma}}$, we can write

$$
\mathbb{C}^{n}=\underset{\text { dim }=r_{1}}{N\left(A-\lambda_{1} I\right)} \underset{\operatorname{dim}=r_{2}}{\stackrel{\perp}{\oplus}} N\left(A-\lambda_{2} I\right) \stackrel{\perp}{\oplus} \ldots \underset{\operatorname{dim}=r_{\sigma}}{\stackrel{\perp}{\oplus}} N\left(A-\lambda_{\sigma} I\right) .
$$

Theorem Let A be a Hermitian matrice with characteristic polynomial $d(s)=\left(s-\lambda_{1}\right)^{r_{1}}\left(s-\lambda_{2}\right)^{r_{2}} \ldots\left(s-\lambda_{\sigma}\right)^{r_{\sigma}}$. Then there exist a unitary matrix P P, i.e., $P^{-1}=P^{*}$ such that $P^{*} A P=\Lambda$ where

$$
\Lambda=\left[\begin{array}{cccc}
\Lambda_{1} & 0 & \ldots & 0 \\
0 & \Lambda_{2} & & \vdots \\
\vdots & & \ddots & 0 \\
0 & \ldots & 0 & \Lambda_{\sigma}
\end{array}\right] \text { and each } \Lambda_{i} \text { is } r_{i} \times r_{i}, \quad \Lambda_{i}=\left[\begin{array}{cccc}
\lambda_{i} & 0 & \ldots & 0 \\
0 & \lambda_{i} & & \vdots \\
\vdots & & \ddots & 0 \\
0 & \ldots & 0 & \lambda_{i}
\end{array}\right]
$$

Proof:

Theorem Let A be an $n \times n$ Hermitian matrix with eigen values $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{\sigma}$. Let $\lambda_{\text {min }}:=\min _{i} \lambda_{i}$ and $\lambda_{\max }:=\max _{i} \lambda_{i}$. Then for all $x \in \mathbb{C}^{n}$ we have,

$$
\lambda_{\min }\langle x, x\rangle \leq\langle x, A x\rangle \leq \lambda_{\max }\langle x, x\rangle
$$

Proof:
Recall that $\mathbb{C}^{n}=N\left(A-\lambda_{1} I\right) \stackrel{\perp}{\oplus} N\left(A-\lambda_{2} I\right) \stackrel{\perp}{\oplus} \ldots \stackrel{\perp}{\oplus} N\left(A-\lambda_{\sigma} I\right)$. Then for a given x we
can write $x=x_{1}+x_{2}+\ldots+x_{\sigma}$ with $x_{i} \in N\left(A-\lambda_{i} I\right)$. Then

$$
\begin{aligned}
\langle x, A x\rangle & =\left\langle\sum_{i=1}^{\sigma} x_{i}, A \sum_{j=1}^{\sigma} x_{j}\right\rangle \\
& =\left\langle\sum_{i=1}^{\sigma} x_{i}, \sum_{j=1}^{\sigma} A x_{j}\right\rangle \\
& =\left\langle\sum_{i=1}^{\sigma} x_{i}, \sum_{j=1}^{\sigma} \lambda_{j} x_{j}\right\rangle \\
& =\sum_{i=1}^{\sigma}\left\langle x_{i}, \sum_{j=1}^{\sigma} \lambda_{j} x_{j}\right\rangle \\
& =\sum_{i=1}^{\sigma}\left\langle x_{i}, \lambda_{i} x_{i}\right\rangle \\
& =\sum_{i=1}^{\sigma} \lambda_{i}\left\langle x_{i}, x_{i}\right\rangle \\
& \Rightarrow \lambda_{\min }\langle x, x\rangle \leq\langle x, A x\rangle \leq \lambda_{\max }\langle x, x\rangle
\end{aligned}
$$

Definition A Hermitian matrix A is said to be positive definite if $\langle x, A x\rangle>0$ for all $x \neq 0 .{ }^{2}$

Theorem If A is a positive definite Hermitian matrix, then all of its eigenvalues are positive.

Proof:

[^1]
8 Functions of a Matrix

The basic motivation to study matrix-valued functions comes from the differential equations describing linear systems ${ }^{3}$

$$
\dot{x}(t)=A x(t)
$$

and its solution

$$
x(t)=e^{A t} x(0)
$$

Definition Consider a scalar valued function $f(s)$ with the following power series expansion:

$$
f(s)=\sum_{i=0}^{\infty} \alpha_{i} s^{i}
$$

The matrix valued function $f(A)$ is defined as,

$$
f(A):=\sum_{i=0}^{\infty} \alpha_{i} A^{i},
$$

which is another matrix with the same size as A.

Example:

$$
e^{t}=\sum_{i=0}^{\infty} \frac{t^{i}}{i!} \quad \Rightarrow \quad e^{A}:=\sum_{i=0}^{\infty} \frac{A^{i}}{i!}
$$

By using Cayley Hamlton theorem, we can express $n^{t h}$ or higher orders of an $n \times n$ matrix as a linear combination of its lower powers: $I, A, A^{2}, \ldots, A^{n-1}$. Then e^{A} can be expressed as,

$$
e^{A}=c_{0}+c_{1} A+c_{2} A^{2}+\ldots+c_{n-1} A^{n-1}
$$

[^2]Similarly, one can use the minimal polynomial of a matrix to express the $l^{\text {th }}$ power of an $n \times n$ matrix as a linear combination of its lower powers: $I, A, \quad A^{2}, \ldots, A^{l-1}$, where l is the order of its minimal polynomial. In that case we can write,

$$
e^{A}=c_{0}+c_{1} A+c_{2} A^{2}+\ldots+c_{l-1} A^{l-1}
$$

Since $l \leq n$, in general it is easier to find the l coefficients of the above equation.
Next, we will deal with the problem of finding the unknown coefficients.

8.1 First Method

Let

$$
f(s)=\sum_{i=0}^{\infty} \alpha_{i} s^{i}
$$

and

$$
f(A)=\sum_{i=0}^{\infty} \alpha_{i} A^{i}
$$

Let us define $p(s)$ and $p(A)$ as follows,

$$
\begin{aligned}
& p(s)=c_{0}+c_{1} s+c_{2} s^{2}+\ldots+c_{l-1} s^{l-1} \\
& p(A)=c_{0}+c_{1} A+c_{2} A^{2}+\ldots+c_{l-1} A^{l-1}
\end{aligned}
$$

Then we have the equality

$$
f(A)=p(A)
$$

Case 1: Matrix A is diagonalizable. Suppose $m(s)=\left(s-\lambda_{1}\right)\left(s-\lambda_{2}\right) \ldots\left(s-\lambda_{\sigma}\right)$, i.e., $l=\sigma$ and $m_{1}=m_{2}=\ldots=m_{\sigma}=1$.
\Rightarrow we have $f\left(\lambda_{j}\right)=p\left(\lambda_{j}\right)$ for $j=1, \ldots, l$ which results in l equations for l unknowns $c_{0}, c_{1}, \ldots, c_{l-1}$.

Example: $A=\left[\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right]$, find e^{A} and $\log (A)$.

Case 2: Matrix A is not diagonalizable.
Consider the following example. Let $A \in \mathbb{R}^{3}$ and $m(s)=\left(s-\lambda_{1}\right)^{2}\left(s-\lambda_{2}\right)$. Let the Jordan canonical form of A be equal to $J=\left[\begin{array}{ccc}\lambda_{1} & 1 & 0 \\ 0 & \lambda_{1} & 0 \\ 0 & 0 & \lambda_{2}\end{array}\right]$. Then,

$$
f(A)=c_{0}+c_{1} A+c_{2} A^{2}=p(A)
$$

$$
\begin{aligned}
& f\left(\lambda_{1}\right)=p\left(\lambda_{1}\right) \\
& f\left(\lambda_{2}\right)=p\left(\lambda_{2}\right)
\end{aligned}
$$

These two equations are not enough to find the three unknowns c_{0}, c_{1}, and c_{2}.
Consider the matrix P, which transforms the matrix A into its Jordan canonical form, i.e., $J=P^{-1} A P$. We know that P has the following form: $P=[\underbrace{e_{1} f_{1}}_{\text {chainfor } \lambda_{1} \text { chainfor } \lambda_{2}} \underbrace{e_{2}}_{e_{2}}]$, where e_{1}, e_{2} are eigenvectors corresponding to λ_{1} and λ_{2} respectively and f_{1} is a generalized eigenvector for λ_{1}. Notice that,

$$
\left[\begin{array}{lll}
e_{1} & f_{1} & e_{1}
\end{array}\right]\left[\begin{array}{ccc}
\lambda_{1} & 1 & 0 \\
0 & \lambda_{1} & 0 \\
0 & 0 & \lambda_{2}
\end{array}\right]=A\left[\begin{array}{lll}
e_{1} & f_{1} & e_{1}
\end{array}\right]
$$

$$
\begin{aligned}
\Rightarrow \quad A f_{1} & =\lambda_{1} f_{1}+e_{1} \\
A^{2} f_{1} & =\lambda_{1} A f_{1}+A e_{1} \\
& =\lambda_{1}\left(\lambda_{1} f_{1}+e_{1}\right)+\lambda_{1} e_{1}=\lambda_{1}^{2} f_{1}+2 \lambda_{1} e_{1} \\
A^{3} f_{1} & =\lambda_{1}^{2} A f_{1}+2 \lambda_{1} A e_{1}=\lambda_{1}^{3} f_{1}+3 \lambda_{1}^{2} e_{1} \\
\vdots & \\
A^{i} f_{1} & =\lambda_{1}^{i} f_{1}+i \lambda_{1}^{i-1} e_{1}
\end{aligned}
$$

Returning back to the equation,

$$
\begin{aligned}
f(A) & =p(A) \\
\sum_{i=0}^{\infty} \alpha_{i} A^{i} & =\sum_{i=0}^{l-1} c_{i} A^{i}
\end{aligned}
$$

and multiplying both sides by f_{1} from right results,

$$
\begin{aligned}
\sum_{i=0}^{\infty} \alpha_{i} A^{i} f_{1} & =\sum_{i=0}^{l-1} c_{i} A^{i} f_{1} \\
\sum_{i=0}^{\infty} \alpha_{i}\left(\lambda_{1}^{i} f_{1}+i \lambda_{1}^{i-1} e_{1}\right) & =\sum_{i=0}^{l-1} c_{i}\left(\lambda_{1}^{i} f_{1}+i \lambda_{1}^{i-1} e_{1}\right) \\
\Rightarrow \quad f\left(\lambda_{1}\right) f_{1}+f^{\prime}\left(\lambda_{1}\right) e_{1} & =p\left(\lambda_{1}\right) f_{1}+p^{\prime}\left(\lambda_{1}\right) e_{1} .
\end{aligned}
$$

Since $f\left(\lambda_{1}\right)=p\left(\lambda_{1}\right)$, we have

$$
f^{\prime}\left(\lambda_{1}\right) e_{1}=p^{\prime}\left(\lambda_{1}\right) e_{1}
$$

Since $e_{i} \neq 0$ we have

$$
f^{\prime}\left(\lambda_{1}\right)=p^{\prime}\left(\lambda_{1}\right),
$$

which is the additional equation needed to find the coefficients $c_{0}, c_{1}, \ldots, c_{l-1}$ of $p(A)$.

General case:

Let $m(s)=\left(s-\lambda_{1}\right)^{m_{1}}\left(s-\lambda_{2}\right)^{m_{2}} \ldots\left(s-\lambda_{\sigma}\right)^{m_{\sigma}}$, we have the following set of equations to find the coefficients $c_{0}, c_{1}, \ldots, c_{l-1}$ of $p(A)$:

$$
f^{(t)}\left(\lambda_{j}\right)=p^{(t)}\left(\lambda_{j}\right), \quad \text { for } \quad j=1, \ldots, \sigma \quad t=0, \ldots, m_{j}-1,
$$

where t denotes the derivative order.

Example: $A=\left[\begin{array}{lllll}0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1\end{array}\right]$. Find $\sin (\pi A)$.

Remark:

$f(A)$ does not exist when $f^{(t)}\left(\lambda_{j}\right) \quad j=1, \ldots, \sigma, \quad t=0, \ldots, m_{j}-1$, does not exist.
Example: $A=\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]$. Consider $f_{1}(s)=\log (s)$ and $f_{2}(s)=(1-s)^{-1}$.
$\lambda_{1}=0, \lambda_{2}=1, \Rightarrow m(s)=s(s-1)$
$\log (A)$ and $(I-A)^{-1}$ do not exist since $f_{1}\left(\lambda_{1}\right)$ and $f_{2}\left(\lambda_{2}\right)$ do not exist.

9 Function of a Matrix Given Its Jordan Form

Example:

Example:

[^0]: ${ }^{1}$ In some books, conjugate transpose is denoted by A^{H} instead of A^{*}.

[^1]: ${ }^{2}$ A Hermitian matrix A is said to be positive semi-definite if $\langle x, A x\rangle \geq 0$ for all $x \neq 0$.

[^2]: ${ }^{3}$ Motivation to pass this course is neglected in this statement.

