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Chapter 2

December 13, 2016

1 Direct Sum

Definition Let V be a vector space and let M1, M2, . . ., Mk are subspaces of V. The

sum of these subspaces M is defined as

M = {m ∈ V : m = m1 +m2 + . . .+mk where mi ∈Mi, i = 1, 2, . . . , k}.

Theorem The sum of subspaces is also a subspace of V .

Proof:

Definition Let M1, M2, . . ., Mk be subspaces of a vector space V. These subspaces are
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said to be linearly independent if,

m =m1 +m2 + . . .+mk = 0, where mi ∈Mi implies

m1 =m2 = . . . = mk = 0 for i = 1, 2, . . . , k

Definition Let M1, M2, . . ., Mk be subspaces of a vector space and also let

• M = M1 +M2 + . . .+Mk

• M1, M2, . . ., Mk are linearly independent

Then M is said to be the direct sum of subspaces M1, M2, . . ., Mk and denoted by

M = M1 ⊕M2 ⊕ . . .⊕Mk

Definition If M = V (the linear space itself) then V = M1⊕M2⊕ . . .⊕Mk is called the

direct sum decomposition of V.

Example: Let V=R4, x = [x1, x2, x3, x4]T ∈ R.

Definition Let V be an inner product space. Two subspaces M1 and M2 are said to be

orthogonal if,

〈m1,m2〉 = 0 ∀m1 ∈M1,m2 ∈M2.
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Orthogonality is denoted as M1 ⊥M2

Definition Let M = M1⊕M2⊕ . . .⊕Mk and let Mi ⊥Mi for all i 6= j. Then M is said

to be orthogonal direct sum of subspaces M1,M2, . . . ,Mk.

Symbolically,

Definition Let M be a subspace of an inner product space V . The orthogonal com-

plement M⊥ of the subspace M is defined as

M⊥ := {x ∈ V : 〈x,m〉 = 0∀m ∈M}.

Theorem M⊥ is itself a subspace.

Proof:

Example: V = R3, M = Span(





0

−1

1


,



−1

0

1




), M⊥ =?
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Theorem Let V be an inner product space and M is a subspace of V . V can always be

written as the direct sum of a subspace and its orthogonal complement, i.e., we always

have V = M ⊕M⊥.

Proof:
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Projection Theorem

2 Projection Theorem

Theorem “Projection Theorem”

Let H be a Hilbert space (inner product space, complete w.r.t the norm induced by the

inner product) and let M be a finite dimensional subspace of H. For any x ∈ H, the

following minimization problem has a solution.

min
m∈M

‖x−m‖

(i.e., we can find the closest vector to x lying in the subspace M).

Proof:
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Projection Theorem

Remark: m∗ = x1 can be interpreted as the “best approximation” of x chosen from the

vectors in M. Vector x2 can be interpreted as the “error in the approximation”. This error

must be orthogonal to the subspace.

Computational aspects of the projection theorem: Suppose we are given a basis for M .

That is, M = Span({v1, v2, . . . vk}). Given x ∈ H ⊃ M , we want to figure out x1 ∈ M ,

where x = x1 + x2 for x2 ∈M⊥.
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Projection Theorem

Example: Let H be the space of square integrable functions with domain [π, π] with

inner product 〈f1, f2〉 =
´ π
−π f1(t)f2(t)dt. Let M be the subspace M = Span{ ejkt

2π }
N
k=−N .

Note that dimension of M is 2N + 1 and the basis set is orthonormal.

〈fn, fm〉 =
ˆ π

−π
ej(n−m)tdt = δn,m

Now, let g ∈ H be an arbitrary vector (a function). Then g = g1 + g2, where g1 ∈M and

g2 ∈M⊥.

Note that, g1(t) is the best approximation to g(t) within the subspace M . g1(t) turns

out to be the finite Fourier series representation of g(t). As N → ∞ we obtain the

Fourier series representation.

Special Case: “Application of the projection theorem in Cn”. Let {m1,m2, . . . ,mk}, k < n

be a basis for a subspace M of Cn. That is, M = Span({m1,m2, . . . ,mk}) . Given an

arbitrary vector x ∈ Cn, we know that x = x1 + x2 with x1 ∈ M , x2 ∈ M⊥. We also

know that x1 and x2 are unique. Let x1 = ∑k
i=1 αimi . Define matrix B = [m1 m2 . . .mk]
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Projection Theorem

whose columns are basis vectors. Then we can write x1 = Bα for α = [α1, . . . , αk]T .

Remark: An orthogonal projection matrix P ∈ Ck×k satisfies:

• P ∗ = P

• P 2 = P ⇒ P i = P for all i = 1, 2, . . .

Remark: In Cn the standard inner product is 〈x, y〉 = y∗x. In Rn, this boils down to

〈x, y〉 = yTx

Example: “Orthogonal projection” Find the orthogonal projection of the vector



1

0

0



onto the subspace spanned by





1

1

1


,



1

−1

1




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Projection Theorem

9



Lecture Notes on Linear Systems Theory, Chpt. 2, Part 2 - Emre Özkan, October 2016

3 Projection Theorem & Solution of Linear Equa-

tions

consider the linear equation expressed as

Ax = b where A ∈ Cm×n & b ∈ Cm×1 & x ∈ Cn×1.

Is there a solution to x? If the answer is yes, is it unique?

Remark:

• A solution exists if and only if b ∈ R(A).

• A solution is unique if and only if N(A) = 0.

Example: Let A = [1 1 1 1]T and b = [2.2 1.9 2.1 1.8]T .

When there is no exact solution, one can try to find the "‘best approximation"’ to a

solution. An approximation can be found by minimizing the norm of the error,

min
x∈Cn
‖Ax− b‖2

If a solution exists, then ‖Ax− b‖2 = 0, otherwise we can find an approximate solution

10



Projection Theorem & Solution of Linear Equations

such that x̂ = arg minx∈Cn ‖Ax− b‖2.

Example: The length x of a metal rod is inaccurately measured four times and the

results are recorded as l1, l2, l3, and l4. What is the best approximation to x?
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Projection Theorem & Solution of Linear Equations

Example: Consider the following scenario:
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Projection Theorem & Solution of Linear Equations

Remark: Suppose x̂ is a solution of Ax = b1. Suppose that m is any vector in N(A),

then x̂+m is another solution.

In the case of non-uniqueness, we are going to look for a solution with the minimum norm.

min
Ax=b1

‖x‖

Let x̂a and x̂b be two solutions to Ax = b. We can decompose both solutions uniquely as:
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Projection Theorem & Solution of Linear Equations

Theorem N(A)⊥ = R(A∗).

Proof:
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Projection Theorem & Solution of Linear Equations

Example: Consider the previous example:
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Projection Theorem & Solution of Linear Equations

Summary:
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Special Cases of Ax = b

4 Special Cases of Ax = b

4.1 Columns of A form a linearly independent set

A is full-column rank.
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Special Cases of Ax = b

4.2 Rows of A form a linearly independent set

A is full-row rank.
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Special Cases of Ax = b

4.3 Both rows & columns of A form a linearly independent set

A is invertible.

19



Lecture Notes on Linear Systems Theory, Chpt. 2, Part 3 - Emre Özkan, October 2016

5 Spectral Analysis of Linear Operators

Definition Let A : V → V be a linear transformation defined over the vector space V .

A subspace M of V is said to be invariant under A if A(x) ∈M for all x ∈M .

Example: R(A) is invariant under A.

Example: N(A) is invariant under A.

Definition Powers of a linear operator are defined as,

Ak(x) = A(A(. . . A(x) . . .))︸ ︷︷ ︸
A applied k times

By using the above definition polynomials of A can be constructed as linear combinations

of powers of A.

Example: P (A) = α0A
n + α1A

n−1 + . . .+ αn−1A+ αnI.

Exercise: Show that R(P (A)) and N(P (A)) are invariant under A.

Definition Let A denote the matrix representation of a linear operator from V to V (A

is a square matrix). The eigenvalues of A, denoted by λi, are defined as the n (n = dim

V ) roots of the equation det(sI-A)=0, where det(sI-A) is known as the characteristic

polynomial of A.
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Spectral Analysis of Linear Operators

Definition Vector(s) ei ∈ V satisfying ei 6= 0 and Aei = λiei is called the eigenvec-

tor(s) of A corresponding to eigenvalue λi.

Example: Let A : Cn → Cn and λi be an eigenvalue of A. N(A−λiI) is invariant under

A.

Proof:

Theorem Let A ∈ Cn×n be the matrix representation of a linear transformation T :

Cn → Cn with respect to the canonical basis. Suppose that,

• Cn = M1 ⊕M2 ⊕ . . .⊕Mk

• Each subspace Mi is invariant under T .

Let dim(Mi) = ni and Mi has a basis set {bi1, bi2, . . . , bini
} =: Bi. Then with respect to

basis {b1
1, b

1
2, . . . , b

1
n1; b2

1, b
2
2, . . . , b

2
n2; . . . ;bk1, bk2, . . . , bknk

},transformation T has a block
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Spectral Analysis of Linear Operators

diagonal matrix representation.

Ā =



Ā1 0 . . . 0

0 Ā2 . . . 0

... ... . . . ...

0 0 . . . Āk


,

where Āi ∈ Cni×ni. In particular, Āi = B−1AB, where B ∈ Cni×ni is given by B =

[B1, B2, . . . , Bni
]

Proof:
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Spectral Analysis of Linear Operators

Example: LetA =



0 1 0

0 0 1

−2 −5 −4


,M1=Span





−2

1

0


,



−1

0

1




,M2=Span





1

−2

4




i) Is M1 invariant under A?

ii) Is M2 invariant under A?

iii) Find Ā?

23



Spectral Analysis of Linear Operators

Let A be an n × n matrix with n distinct eigenvalues λ1, λ2, . . . , λn Let e1, e2, . . . , en be

the eigenvectors corresponding to these eigen values, i.e., Aei = λiei, i = 1, 2, . . . , n.

Claim: The set of eigenvectors {e1, e2, . . . , en} form a linearly independent set.

Furthermore, N(A− λiI) = Span(ei) for all i.
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Spectral Analysis of Linear Operators

Proof:
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Spectral Analysis of Linear Operators
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Spectral Analysis of Linear Operators

Theorem "’Cayley-Hamilton"’ Every n× n matrix satisfies its own characteristic equa-

tion, i.e., d(A) = 0n×n.

Example:

Proof:
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Spectral Analysis of Linear Operators

Proof (..continued)

Fact: Let M ∈ Cn×n. For each δ > 0, there exists a matrix M̃ ∈ Cn×n with distinct

eigenvalues satisfying
∥∥∥M − M̃∥∥∥ < δ. This is equivalent to stating: "‘Matrices with

distinct eigenvalues form a dense subset of Cn×n "’.

Fact: "‘An example"’, Assume A =

 a b

c d

 has repeated eigenvalues, i.e., λ1 = λ2.

Then for each δ > 0 one can find numbers ε1, ε2, ε3, ε4 satisfying |εi| < δ such that

Aδ =

 a+ ε1 b+ ε2

c+ ε3 d+ ε4

 has distinct eigenvalues, i.e., λδ1 6= λδ2

Let us choose a sequence {An}∞n=1 satisfying ‖A− An‖ < 1
n
and An has distinct eigenval-

ues. Let us define dn(s) := det(sI − An). Since det(.) is a continuous function one can

write d(A) = limn→∞ dn(An).

Note that dn(An) = 0 for all n. Hence d(A)=0.

Example:
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Spectral Analysis of Linear Operators

Example:
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Minimal Polynomial

6 Minimal Polynomial

Definition For an n× n matrix A, the minimal polynomial m(s) is the monic poly-

nomial with smallest degree such that m(A) = 0n×n

Remark: A monic polynomial has unity as the coefficient of its highest order term.

Theorem Given A ∈ Cn×n, let m(s) be its minimal polynomial.

• m(s) is unique;

• m(s) divides d(s), i.e., there exist a q(s) such that d(s) = m(s)q(s);

• Every root of d(s) is also a root of m(s).
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Minimal Polynomial

Proof:
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