Chapter 2

December 13, 2016

1 Direct Sum

Definition Let V be a vector space and let $M_{1}, M_{2}, \ldots, M_{k}$ are subspaces of V. The sum of these subspaces M is defined as

$$
M=\left\{m \in V: \quad m=m_{1}+m_{2}+\ldots+m_{k} \quad \text { where } m_{i} \in M_{i}, \quad i=1,2, \ldots, k\right\} .
$$

Theorem The sum of subspaces is also a subspace of V.

Proof:

Definition Let $M_{1}, M_{2}, \ldots, M_{k}$ be subspaces of a vector space V. These subspaces are
said to be linearly independent if,

$$
\begin{aligned}
& m=m_{1}+m_{2}+\ldots+m_{k}=0, \quad \text { where } m_{i} \in M_{i} \quad \text { implies } \\
& m_{1}=m_{2}=\ldots=m_{k}=0 \quad \text { for } \quad i=1,2, \ldots, k
\end{aligned}
$$

Definition Let $M_{1}, M_{2}, \ldots, M_{k}$ be subspaces of a vector space and also let

- $M=M_{1}+M_{2}+\ldots+M_{k}$
- $M_{1}, M_{2}, \ldots, M_{k}$ are linearly independent

Then M is said to be the direct sum of subspaces $M_{1}, M_{2}, \ldots, M_{k}$ and denoted by $M=M_{1} \oplus M_{2} \oplus \ldots \oplus M_{k}$

Definition If $M=V$ (the linear space itself) then $V=M_{1} \oplus M_{2} \oplus \ldots \oplus M_{k}$ is called the direct sum decomposition of V.

Example: Let $\mathrm{V}=\mathbb{R}^{4}, x=\left[x_{1}, x_{2}, x_{3}, x_{4}\right]^{T} \in \mathbb{R}$.

Definition Let V be an inner product space. Two subspaces M_{1} and M_{2} are said to be orthogonal if,

$$
\left\langle m_{1}, m_{2}\right\rangle=0 \quad \forall m_{1} \in M_{1}, m_{2} \in M_{2} .
$$

Orthogonality is denoted as $M_{1} \perp M_{2}$

Definition Let $M=M_{1} \oplus M_{2} \oplus \ldots \oplus M_{k}$ and let $M_{i} \perp M_{i}$ for all $i \neq j$. Then M is said to be orthogonal direct sum of subspaces $M_{1}, M_{2}, \ldots, M_{k}$.

Symbolically,

Definition Let M be a subspace of an inner product space V. The orthogonal complement M^{\perp} of the subspace M is defined as

$$
M^{\perp}:=\{x \in V:\langle x, m\rangle=0 \forall m \in M\} .
$$

Theorem M^{\perp} is itself a subspace.

Proof:

Example: $V=\mathbb{R}^{3}, M=\operatorname{Span}\left(\left\{\left[\begin{array}{c}0 \\ -1 \\ 1\end{array}\right],\left[\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right]\right\}\right), \quad M^{\perp}=$?

Theorem Let V be an inner product space and M is a subspace of $V . V$ can always be written as the direct sum of a subspace and its orthogonal complement, i.e., we always have $\quad V=M \oplus M^{\perp}$.

Proof:

2 Projection Theorem

Theorem"Projection Theorem"
Let H be a Hilbert space (inner product space, complete w.r.t the norm induced by the inner product) and let M be a finite dimensional subspace of H. For any $x \in H$, the following minimization problem has a solution.

$$
\min _{m \in M}\|x-m\|
$$

(i.e., we can find the closest vector to x lying in the subspace M).

Proof:

Remark: $m^{*}=x_{1}$ can be interpreted as the "best approximation" of x chosen from the vectors in M. Vector x_{2} can be interpreted as the "error in the approximation". This error must be orthogonal to the subspace.

Computational aspects of the projection theorem: Suppose we are given a basis for M. That is, $M=\operatorname{Span}\left(\left\{v_{1}, v_{2}, \ldots v_{k}\right\}\right)$. Given $x \in H \supset M$, we want to figure out $x_{1} \in M$, where $x=x_{1}+x_{2}$ for $x_{2} \in M^{\perp}$.

Example: Let H be the space of square integrable functions with domain $[\pi, \pi]$ with inner product $\left\langle f_{1}, f_{2}\right\rangle=\int_{-\pi}^{\pi} f_{1}(t) \overline{f_{2}(t)} d t$. Let M be the subspace $M=\operatorname{Span}\left\{\frac{e^{j k t}}{2 \pi}\right\}_{k=-N}^{N}$. Note that dimension of M is $2 N+1$ and the basis set is orthonormal.

$$
\left\langle f_{n}, f_{m}\right\rangle=\int_{-\pi}^{\pi} e^{j(n-m) t} d t=\delta_{n, m}
$$

Now, let $g \in H$ be an arbitrary vector (a function). Then $g=g_{1}+g_{2}$, where $g_{1} \in M$ and $g_{2} \in M^{\perp}$.

Note that, $g_{1}(t)$ is the best approximation to $g(t)$ within the subspace $M . g_{1}(t)$ turns out to be the finite Fourier series representation of $g(t)$. As $N \rightarrow \infty$ we obtain the Fourier series representation.

Special Case: "Application of the projection theorem in \mathbb{C}^{n} ". Let $\left\{m_{1}, m_{2}, \ldots, m_{k}\right\}, k<n$ be a basis for a subspace M of \mathbb{C}^{n}. That is, $M=\operatorname{Span}\left(\left\{m_{1}, m_{2}, \ldots, m_{k}\right\}\right)$. Given an arbitrary vector $x \in \mathbb{C}^{n}$, we know that $x=x_{1}+x_{2}$ with $x_{1} \in M, x_{2} \in M^{\perp}$. We also know that x_{1} and x_{2} are unique. Let $x_{1}=\sum_{i=1}^{k} \alpha_{i} m_{i}$. Define matrix $B=\left[\begin{array}{llll}m_{1} & m_{2} & \ldots & m_{k}\end{array}\right]$
whose columns are basis vectors. Then we can write $x_{1}=B \alpha$ for $\alpha=\left[\alpha_{1}, \ldots, \alpha_{k}\right]^{T}$.

Remark: An orthogonal projection matrix $P \in \mathbb{C}^{k \times k}$ satisfies:

- $P^{*}=P$
- $P^{2}=P \Rightarrow P^{i}=P$ for all $i=1,2, \ldots$

Remark: In \mathbb{C}^{n} the standard inner product is $\langle x, y\rangle=y^{*} x$. In \mathbb{R}^{n}, this boils down to $\langle x, y\rangle=y^{T} x$

Example: "Orthogonal projection" Find the orthogonal projection of the vector onto the subspace spanned by $\left\{\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{c}1 \\ -1 \\ 1\end{array}\right]\right\}$

3 Projection Theorem \& Solution of Linear Equa-
 tions

consider the linear equation expressed as

$$
A x=b \quad \text { where } A \in \mathbb{C}^{m \times n} \quad \& \quad b \in \mathbb{C}^{m \times 1} \quad \& \quad x \in \mathbb{C}^{n \times 1}
$$

Is there a solution to x ? If the answer is yes, is it unique?

Remark:

- A solution exists if and only if $b \in R(A)$.
- A solution is unique if and only if $N(A)=0$.

Example: Let $A=\left[\begin{array}{llll}1 & 1 & 1 & 1\end{array}\right]^{T}$ and $b=\left[\begin{array}{llll}2.2 & 1.9 & 2.1 & 1.8\end{array}\right]^{T}$.

When there is no exact solution, one can try to find the "'best approximation"' to a solution. An approximation can be found by minimizing the norm of the error,

$$
\min _{x \in \mathbb{C}^{n}}\|A x-b\|^{2}
$$

If a solution exists, then $\|A x-b\|^{2}=0$, otherwise we can find an approximate solution
such that $\hat{x}=\arg \min _{x \in \mathbb{C}^{n}}\|A x-b\|^{2}$.

Example: The length x of a metal rod is inaccurately measured four times and the results are recorded as l_{1}, l_{2}, l_{3}, and l_{4}. What is the best approximation to x ?

Example: Consider the following scenario:

Remark: Suppose \hat{x} is a solution of $A x=b_{1}$. Suppose that m is any vector in $N(A)$, then $\hat{x}+m$ is another solution.

In the case of non-uniqueness, we are going to look for a solution with the minimum norm.

$$
\min _{A x=b_{1}}\|x\|
$$

Let \hat{x}^{a} and \hat{x}^{b} be two solutions to $A x=b$. We can decompose both solutions uniquely as:

Theorem $N(A)^{\perp}=R\left(A^{*}\right)$.

Proof:

Example: Consider the previous example:

Summary:

4 Special Cases of $A x=b$

4.1 Columns of \mathbf{A} form a linearly independent set

A is full-column rank.

4.2 Rows of A form a linearly independent set

A is full-row rank.
4.3 Both rows \& columns of A form a linearly independent set

A is invertible.

5 Spectral Analysis of Linear Operators

Definition Let $A: V \rightarrow V$ be a linear transformation defined over the vector space V. A subspace M of V is said to be invariant under A if $A(x) \in M$ for all $x \in M$.

Example: $\mathrm{R}(\mathrm{A})$ is invariant under A.

Example: N(A) is invariant under A.

Definition Powers of a linear operator are defined as,

$$
A^{k}(x)=\underbrace{A(A(\ldots A(x) \ldots))}_{A \text { applied } k \text { times }}
$$

By using the above definition polynomials of A can be constructed as linear combinations of powers of A.

Example: $P(A)=\alpha_{0} A^{n}+\alpha_{1} A^{n-1}+\ldots+\alpha_{n-1} A+\alpha_{n} I$.

Exercise: Show that $R(P(A))$ and $N(P(A))$ are invariant under A.

Definition Let A denote the matrix representation of a linear operator from V to V (A is a square matrix). The eigenvalues of A, denoted by λ_{i}, are defined as the n ($n=\operatorname{dim}$ $V)$ roots of the equation $\operatorname{det}(s I-A)=0$, where $\operatorname{det}(s I-A)$ is known as the characteristic polynomial of A.

Definition Vector(s) $e_{i} \in V$ satisfying $e_{i} \neq 0$ and $A e_{i}=\lambda_{i} e_{i}$ is called the eigenvec$\boldsymbol{\operatorname { t o r }}(s)$ of A corresponding to eigenvalue λ_{i}.

Example: Let $A: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ and λ_{i} be an eigenvalue of A. $N\left(A-\lambda_{i} I\right)$ is invariant under A.

Proof:

Theorem Let $A \in \mathbb{C}^{n \times n}$ be the matrix representation of a linear transformation T : $\mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ with respect to the canonical basis. Suppose that,

- $\mathbb{C}^{n}=M_{1} \oplus M_{2} \oplus \ldots \oplus M_{k}$
- Each subspace M_{i} is invariant under T.

Let $\operatorname{dim}\left(M_{i}\right)=n_{i}$ and M_{i} has a basis set $\left\{b_{1}^{i}, b_{2}^{i}, \ldots, b_{n_{i}}^{i}\right\}=: B_{i}$. Then with respect to basis $\left\{b_{1}^{1}, b_{2}^{1}, \ldots, b_{n_{1}}^{1} ; \quad b_{1}^{2}, b_{2}^{2}, \ldots, b_{n_{2}}^{2} ; \quad \ldots \quad ; b_{1}^{k}, b_{2}^{k}, \ldots, b_{n_{k}}^{k}\right\}$,transformation T has a block
diagonal matrix representation.

$$
\bar{A}=\left[\begin{array}{cccc}
\bar{A}_{1} & 0 & \ldots & 0 \\
0 & \bar{A}_{2} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & \bar{A}_{k}
\end{array}\right],
$$

where $\bar{A}_{i} \in \mathbb{C}^{n_{i} \times n_{i}}$. In particular, $\bar{A}_{i}=B^{-1} A B$, where $B \in \mathbb{C}^{n_{i} \times n_{i}}$ is given by $B=$ $\left[B_{1}, B_{2}, \ldots, B_{n_{i}}\right]$

Proof:

Example: Let $A=\left[\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & 1 \\ -2 & -5 & -4\end{array}\right], M_{1}=\operatorname{Span}\left\{\left[\begin{array}{c}-2 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right]\right\}, M_{2}=\operatorname{Span}\left\{\left[\begin{array}{c}1 \\ -2 \\ 4\end{array}\right]\right\}$
i) Is M_{1} invariant under A ?
ii) Is M_{2} invariant under A ?
iii) Find \bar{A} ?

Let A be an $n \times n$ matrix with n distinct eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ Let $e_{1}, e_{2}, \ldots, e_{n}$ be the eigenvectors corresponding to these eigen values, i.e., $A e_{i}=\lambda_{i} e_{i}, i=1,2, \ldots, n$. Claim: The set of eigenvectors $\left\{e_{1}, \quad e_{2}, \ldots, e_{n}\right\}$ form a linearly independent set. Furthermore, $N\left(A-\lambda_{i} I\right)=\operatorname{Span}\left(e_{i}\right)$ for all i.

Proof:

Theorem "'Cayley-Hamilton"' Every $n \times n$ matrix satisfies its own characteristic equation, i.e., $d(A)=0_{n \times n}$.

Example:

Proof:

Proof (..continued)

Fact: Let $M \in \mathbb{C}^{n \times n}$. For each $\delta>0$, there exists a matrix $\tilde{M} \in \mathbb{C}^{n \times n}$ with distinct eigenvalues satisfying $\|M-\tilde{M}\|<\delta$. This is equivalent to stating: "'Matrices with distinct eigenvalues form a dense subset of $\mathbb{C}^{n \times n}$ ".
Fact: "'An example", Assume $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ has repeated eigenvalues, i.e., $\lambda_{1}=\lambda_{2}$. Then for each $\delta>0$ one can find numbers $\epsilon_{1}, \epsilon_{2}, \epsilon_{3}, \epsilon_{4}$ satisfying $\left|\epsilon_{i}\right|<\delta$ such that $A_{\delta}=\left[\begin{array}{ll}a+\epsilon_{1} & b+\epsilon_{2} \\ c+\epsilon_{3} & d+\epsilon_{4}\end{array}\right]$ has distinct eigenvalues, i.e., $\lambda_{1}^{\delta} \neq \lambda_{2}^{\delta}$
Let us choose a sequence $\left\{A_{n}\right\}_{n=1}^{\infty}$ satisfying $\left\|A-A_{n}\right\|<\frac{1}{n}$ and A_{n} has distinct eigenvalues. Let us define $d_{n}(s):=\operatorname{det}\left(s I-A_{n}\right)$. Since $\operatorname{det}($.$) is a continuous function one can$ write $d(A)=\lim _{n \rightarrow \infty} d_{n}\left(A_{n}\right)$.

Note that $d_{n}\left(A_{n}\right)=0$ for all n . Hence $\mathrm{d}(\mathrm{A})=0$.

Example:

Example:

6 Minimal Polynomial

Definition For an $n \times n$ matrix A, the minimal polynomial $m(s)$ is the monic polynomial with smallest degree such that $m(A)=0_{n \times n}$

Remark: A monic polynomial has unity as the coefficient of its highest order term.

Theorem Given $A \in \mathbb{C}^{n \times n}$, let $m(s)$ be its minimal polynomial.

- $m(s)$ is unique;
- $m(s)$ divides $d(s)$, i.e., there exist a $q(s)$ such that $d(s)=m(s) q(s)$;
- Every root of $d(s)$ is also a root of $m(s)$.

Proof:

