Chapter 2

December 13, 2016

1 Direct Sum

Definition Let V be a vector space and let M_1, M_2, \ldots, M_k are subspaces of V. The **sum** of these subspaces M is defined as

 $M = \{ m \in V : m = m_1 + m_2 + \ldots + m_k \text{ where } m_i \in M_i, i = 1, 2, \ldots, k \}.$

Theorem The sum of subspaces is also a subspace of V.

Proof:

Definition Let M_1, M_2, \ldots, M_k be subspaces of a vector space V. These subspaces are

said to be linearly independent if,

 $m = m_1 + m_2 + \ldots + m_k = 0$, where $m_i \in M_i$ implies $m_1 = m_2 = \ldots = m_k = 0$ for $i = 1, 2, \ldots, k$

Definition Let M_1, M_2, \ldots, M_k be subspaces of a vector space and also let

- $M = M_1 + M_2 + \ldots + M_k$
- M_1, M_2, \ldots, M_k are linearly independent

Then M is said to be the **direct sum** of subspaces M_1, M_2, \ldots, M_k and denoted by $M = M_1 \oplus M_2 \oplus \ldots \oplus M_k$

Definition If M = V (the linear space itself) then $V = M_1 \oplus M_2 \oplus \ldots \oplus M_k$ is called the direct sum decomposition of V.

Example: Let $V = \mathbb{R}^4$, $x = [x_1, x_2, x_3, x_4]^T \in \mathbb{R}$.

Definition Let V be an inner product space. Two subspaces M_1 and M_2 are said to be orthogonal if,

$$\langle m_1, m_2 \rangle = 0 \quad \forall m_1 \in M_1, m_2 \in M_2.$$

Orthogonality is denoted as $M_1 \perp M_2$

Definition Let $M = M_1 \oplus M_2 \oplus \ldots \oplus M_k$ and let $M_i \perp M_i$ for all $i \neq j$. Then M is said to be **orthogonal direct sum** of subspaces M_1, M_2, \ldots, M_k .

Symbolically,

Definition Let M be a subspace of an inner product space V. The orthogonal complement M^{\perp} of the subspace M is defined as

$$M^{\perp} := \{ x \in V : \langle x, m \rangle = 0 \forall m \in M \}.$$

Theorem M^{\perp} is itself a subspace.

Example:
$$V = \mathbb{R}^3$$
, $M = Span(\left\{ \begin{bmatrix} 0\\ -1\\ 1 \end{bmatrix}, \begin{bmatrix} -1\\ 0\\ 1 \end{bmatrix} \right\}), \quad M^{\perp} = ?$

Theorem Let V be an inner product space and M is a subspace of V. V can always be written as the direct sum of a subspace and its orthogonal complement, i.e., we always have $V = M \oplus M^{\perp}$.

2 Projection Theorem

Theorem "Projection Theorem"

Let H be a Hilbert space (inner product space, complete w.r.t the norm induced by the inner product) and let M be a finite dimensional subspace of H. For any $x \in H$, the following minimization problem has a solution.

$$\min_{m \in M} \|x - m\|$$

(i.e., we can find the closest vector to x lying in the subspace M).

<u>Remark:</u> $m^* = x_1$ can be interpreted as the "best approximation" of x chosen from the vectors in M. Vector x_2 can be interpreted as the "error in the approximation". This error must be orthogonal to the subspace.

Computational aspects of the projection theorem: Suppose we are given a basis for M. That is, $M = Span(\{v_1, v_2, \dots v_k\})$. Given $x \in H \supset M$, we want to figure out $x_1 \in M$, where $x = x_1 + x_2$ for $x_2 \in M^{\perp}$. **Example:** Let H be the space of square integrable functions with domain $[\pi, \pi]$ with inner product $\langle f_1, f_2 \rangle = \int_{-\pi}^{\pi} f_1(t) \overline{f_2(t)} dt$. Let M be the subspace $M = Span\{\frac{e^{jkt}}{2\pi}\}_{k=-N}^N$. Note that dimension of M is 2N + 1 and the basis set is orthonormal.

$$\langle f_n, f_m \rangle = \int_{-\pi}^{\pi} e^{j(n-m)t} dt = \delta_{n,m}$$

Now, let $g \in H$ be an arbitrary vector (a function). Then $g = g_1 + g_2$, where $g_1 \in M$ and $g_2 \in M^{\perp}$.

Note that, $g_1(t)$ is the **best approximation** to g(t) within the subspace M. $g_1(t)$ turns out to be the finite Fourier series representation of g(t). As $N \to \infty$ we obtain the **Fourier series** representation.

<u>Special Case</u>: "Application of the projection theorem in \mathbb{C}^n ". Let $\{m_1, m_2, \ldots, m_k\}, k < n$ be a basis for a subspace M of \mathbb{C}^n . That is, $M = Span(\{m_1, m_2, \ldots, m_k\})$. Given an arbitrary vector $x \in \mathbb{C}^n$, we know that $x = x_1 + x_2$ with $x_1 \in M, x_2 \in M^{\perp}$. We also know that x_1 and x_2 are unique. Let $x_1 = \sum_{i=1}^k \alpha_i m_i$. Define matrix $B = [m_1 \ m_2 \ \ldots \ m_k]$ whose columns are basis vectors. Then we can write $x_1 = B\alpha$ for $\alpha = [\alpha_1, \ldots, \alpha_k]^T$.

<u>Remark:</u> An orthogonal projection matrix $P \in \mathbb{C}^{k \times k}$ satisfies:

- $P^* = P$
- $P^2 = P \Rightarrow P^i = P$ for all i = 1, 2, ...

<u>Remark</u>: In \mathbb{C}^n the standard inner product is $\langle x, y \rangle = y^* x$. In \mathbb{R}^n , this boils down to $\langle x, y \rangle = y^T x$

Example: "Orthogonal projection" Find the orthogonal projection of the vector 0

onto the subspace spanned by $\left\{ \begin{array}{c|c} 1 \\ 1 \\ 1 \end{array}, \begin{array}{c|c} -1 \\ 1 \end{array} \right\}$

3 Projection Theorem & Solution of Linear Equations

consider the linear equation expressed as

Ax = b where $A \in \mathbb{C}^{m \times n}$ & $b \in \mathbb{C}^{m \times 1}$ & $x \in \mathbb{C}^{n \times 1}$.

Is there a solution to x? If the answer is yes, is it unique?

Remark:

- A solution exists if and only if $b \in R(A)$.
- A solution is unique if and only if N(A) = 0.

Example: Let $A = [1 \ 1 \ 1 \ 1]^T$ and $b = [2.2 \ 1.9 \ 2.1 \ 1.8]^T$.

When there is no exact solution, one can try to find the "'best approximation"' to a solution. An approximation can be found by minimizing the norm of the error,

$$\min_{x \in \mathbb{C}^n} \|Ax - b\|^2$$

If a solution exists, then $||Ax - b||^2 = 0$, otherwise we can find an approximate solution

such that $\hat{x} = \arg \min_{x \in \mathbb{C}^n} \|Ax - b\|^2$.

Example: The length x of a metal rod is inaccurately measured four times and the results are recorded as l_1 , l_2 , l_3 , and l_4 . What is the best approximation to x?

Example: Consider the following scenario:

Remark: Suppose \hat{x} is a solution of $Ax = b_1$. Suppose that m is any vector in N(A), then $\hat{x} + m$ is another solution.

In the case of non-uniqueness, we are going to look for a solution with the minimum norm.

$$\min_{Ax=b_1} \|x\|$$

Let \hat{x}^a and \hat{x}^b be two solutions to Ax = b. We can decompose both solutions uniquely as:

Theorem $N(A)^{\perp} = R(A^*).$

Example: Consider the previous example:

Summary:

4 Special Cases of Ax = b

4.1 Columns of A form a linearly independent set

A is full-column rank.

4.2 Rows of A form a linearly independent set

A is full-row rank.

4.3 Both rows & columns of A form a linearly independent set

A is invertible.

5 Spectral Analysis of Linear Operators

Definition Let $A: V \to V$ be a linear transformation defined over the vector space V. A subspace M of V is said to be **invariant** under A if $A(x) \in M$ for all $x \in M$.

Example: R(A) is invariant under A.

Example: N(A) is invariant under A.

Definition Powers of a linear operator are defined as,

$$A^{k}(x) = \underbrace{A(A(\dots A(x) \dots))}_{A \text{ annlied } k \text{ times}}$$

By using the above definition polynomials of A can be constructed as linear combinations of powers of A.

Example: $P(A) = \alpha_0 A^n + \alpha_1 A^{n-1} + \ldots + \alpha_{n-1} A + \alpha_n I.$

Exercise: Show that R(P(A)) and N(P(A)) are invariant under A.

Definition Let A denote the matrix representation of a linear operator from V to V (A is a square matrix). The **eigenvalues** of A, denoted by λ_i , are defined as the n (n = dim V) roots of the equation det(sI-A)=0, where det(sI-A) is known as the **characteristic** polynomial of A.

Definition Vector(s) $e_i \in V$ satisfying $e_i \neq 0$ and $Ae_i = \lambda_i e_i$ is called the **eigenvec**tor(s) of A corresponding to eigenvalue λ_i .

Example: Let $A : \mathbb{C}^n \to \mathbb{C}^n$ and λ_i be an eigenvalue of A. $N(A - \lambda_i I)$ is invariant under A.

Proof:

Theorem Let $A \in \mathbb{C}^{n \times n}$ be the matrix representation of a linear transformation T: $\mathbb{C}^n \to \mathbb{C}^n$ with respect to the canonical basis. Suppose that,

- $\mathbb{C}^n = M_1 \oplus M_2 \oplus \ldots \oplus M_k$
- Each subspace M_i is invariant under T.

Let $dim(M_i) = n_i$ and M_i has a basis set $\{b_1^i, b_2^i, \dots, b_{n_i}^i\} =: B_i$. Then with respect to basis $\{b_1^1, b_2^1, \dots, b_{n_1}^1; b_1^2, b_2^2, \dots, b_{n_2}^2; \dots; b_1^k, b_2^k, \dots, b_{n_k}^k\}$, transformation T has a block diagonal matrix representation.

$$\bar{A} = \begin{bmatrix} \bar{A}_1 & 0 & \dots & 0 \\ 0 & \bar{A}_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \bar{A}_k \end{bmatrix},$$

where $\bar{A}_i \in \mathbb{C}^{n_i \times n_i}$. In particular, $\bar{A}_i = B^{-1}AB$, where $B \in \mathbb{C}^{n_i \times n_i}$ is given by $B = [B_1, B_2, \dots, B_{n_i}]$

Example: Let
$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -2 & -5 & -4 \end{bmatrix}$$
, $M_1 = Span \left\{ \begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} \right\}$, $M_2 = Span \left\{ \begin{bmatrix} 1 \\ -2 \\ 4 \end{bmatrix} \right\}$

- i) Is M_1 invariant under A?
- ii) Is M_2 invariant under A?
- iii) Find \overline{A} ?

Let A be an $n \times n$ matrix with n distinct eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$ Let e_1, e_2, \ldots, e_n be the eigenvectors corresponding to these eigen values, i.e., $Ae_i = \lambda_i e_i$, $i = 1, 2, \ldots, n$. **Claim:** The set of eigenvectors $\{e_1, e_2, \ldots, e_n\}$ form a linearly independent set.

Furthermore, $N(A - \lambda_i I) = Span(e_i)$ for all i.

Theorem "'Cayley-Hamilton"' Every $n \times n$ matrix satisfies its own characteristic equa-

tion, i.e., $d(A) = 0_{n \times n}$.

Example:

Proof (..continued)

Fact: Let $M \in \mathbb{C}^{n \times n}$. For each $\delta > 0$, there exists a matrix $\tilde{M} \in \mathbb{C}^{n \times n}$ with distinct eigenvalues satisfying $\|M - \tilde{M}\| < \delta$. This is equivalent to stating: "'Matrices with distinct eigenvalues form a dense subset of $\mathbb{C}^{n \times n}$ "'.

Fact: "'An example"', Assume $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ has repeated eigenvalues, i.e., $\lambda_1 = \lambda_2$. Then for each $\delta > 0$ one can find numbers $\epsilon_1, \epsilon_2, \epsilon_3, \epsilon_4$ satisfying $|\epsilon_i| < \delta$ such that $A_{\delta} = \begin{bmatrix} a + \epsilon_1 & b + \epsilon_2 \\ c + \epsilon_3 & d + \epsilon_4 \end{bmatrix}$ has distinct eigenvalues, i.e., $\lambda_1^{\delta} \neq \lambda_2^{\delta}$ Let us choose a sequence $\{A_n\}_{n=1}^{\infty}$ satisfying $||A - A_n|| < \frac{1}{n}$ and A_n has distinct eigenvalues.

Let us choose a sequence $(M_n)_{n=1}^n$ satisfying $||M - M_n|| < n$ and M_n has distinct eigenvarues. ues. Let us define $d_n(s) := det(sI - A_n)$. Since det(.) is a continuous function one can write $d(A) = \lim_{n \to \infty} d_n(A_n)$.

Note that $d_n(A_n) = 0$ for all n. Hence d(A)=0.

Example:

Example:

6 Minimal Polynomial

Definition For an $n \times n$ matrix A, the **minimal polynomial** m(s) is the monic polynomial with smallest degree such that $m(A) = 0_{n \times n}$

Remark: A monic polynomial has unity as the coefficient of its highest order term.

Theorem Given $A \in \mathbb{C}^{n \times n}$, let m(s) be its minimal polynomial.

- m(s) is unique;
- m(s) divides d(s), i.e., there exist a q(s) such that d(s) = m(s)q(s);
- Every root of d(s) is also a root of m(s).