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Introduction

Radial basis function (RBF) networks are feed-forward networks trained using a 
supervised training algorithm. They are typically configured with a single hidden layer of 
units whose output function is selected from a class of  functions called basis functions. 

While similar to back propagation in many respects, radial basis function  networks have 
several advantages. They are usually trained much faster than back propagation 
networks. They are less susceptible to problems with non-stationary inputs because of 
the behavior of the radial basis function hidden units.

In this chapter first the structure of the network will be introduced and it will be explained 
how it can be used for function approximation and data interpolation. Then it will be 
explained how it can be trained.



Ugur HALICI - METU EEE - ANKARA 12/12/2005

EE543 - ANN - CHAPTER 9 2

CHAPTER CHAPTER IX :IX : Radial Basis Function Networks Radial Basis Function Networks 

9.1 The Structure of the RBF Networks 
Radial Basis Functions are first 
introduced in the solution of the real 
multivariable interpolation problems. 
Broomhead and Lowe (1988),   and 
Moody and Darken (1989) were the 
first to exploit the use of radial basis 
functions in the design of neural 
networks. 

The structure of an RBF networks in 
its most basic form involves three 
entirely different layers (Figure 9.1). 

The input layer is made up of source 
nodes (sensory units) whose number 
is equal to the dimension N of the 
input vector u. 

c1

c2

ci

cL

u1

u2

ul

uN

x1

x2

xj

xM

wj

w1

w2

wM

1

Fig. 9.1. Structure of the Standart RBF 
network
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9.1.1 Hidden layer 

The second layer is the hidden layer which is 
composed of nonlinear units that are connected 
directly to all of the nodes in the input layer. 

Each hidden unit takes its input from all the 
nodes at the components at the input layer. 

As mentioned before the hidden units contains a 
basis function, which has the parameters center 
and width.

The center of the basis function for a node i at 
the hidden layer  is a vector ci whose size is the 
as the input vector u and there is normally a 
different center for each unit in the network. 
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9.1.1 Hidden layer 

First, the radial distance di, between the input 
vector u and the center of the basis function ci is 
computed for each unit i in the hidden layer as

(9.1.1)
using the Euclidean distance.

• The output hi of each hidden unit i is then 
computed by applying the basis function G to this 
distance 

hi = G(di,σi) (9.1.2)

As it is shown in  Figure 9.2, the basis function is a 
curve (typically a Gaussian function, the width 
corresponding to the variance, σi ) which has a 
peak at zero distance and it decreases as the 
distance from the center increases.  
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Figure 9.2. The response region of an 
RBF hidden node around its center as a 
function of the distance from this center.
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9.1.1 Hidden layer 

For an input space u∈R2, that is M=2,  this 
corresponds to the two dimensional 
Gaussian centered at ci on the input space, 
where also ci ∈R2, as it is shown in Figure 
9.3 

Figure 9.3 Response of  a hidden unit on the 
input space for  u∈R2
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9.1.3 Mathematical model

The transformation from the input space to the 
hidden unit space is nonlinear, whereas the 
transformation to the hidden unit space to the 
output space is linear.

The jth output is computed as

(9.1.3)Mjhwwx
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9.2  Function approximation 

Let y=g(u) be a given function of u, y∈R, u∈R, g:R→R, and let Gi i=1..L, be a finite set of 
basis functions. 

The function g can be written in terms of the given basis functions as

(9.2.1)

where  r(u) is the residual.
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9.2  Function approximation 

The function y can be approximated as

(9.2.2)

• The aim is to minimize the error by setting the parameters of Gi appropriately. A possible 
choice for the error definition is the L2 norm of the residual function r(u) which is defined 
as

(9.2.3)
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9.2.1 Approximation by RBFNN

• Now, consider the single input single output RBF 
network shown in Figure 9.4. Then x can be written as

(9.2.4)

• By the use of such a network, y can be written as

(9.2.5)

where f(u) is the output of the RBFNN given in Figure 
9.4 and r(u) is the residual. By setting the center ci, the 
variance σi , and the weight wi appropriately, the error 
can be minimized. 

• Whatever we discussed here for g:R→R, can be 
generalized to g:RN→RM easily by using an N input, M
output RBFNN given in figure 9.1 previously. 
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Figure 9.4 Single input, single 
output RBF network

0
1

)()f( wGwx
L

i
iii +−== ∑

=

cuu

)r()f()r()( 0
1

uuuwcuGwy
L

i
ii +=++−=∑

=



Ugur HALICI - METU EEE - ANKARA 12/12/2005

EE543 - ANN - CHAPTER 9 6

CHAPTER CHAPTER IX :IX : Radial Basis Function Networks Radial Basis Function Networks 

9.2.2 Data Interpolation 

Given  input output training patterns (uk,yk), k=1,2, ..K, the aim of data interpolation is to 
approximate  the function y from which the data is generated. Since the function y is 
unknown, the problem can be stated as a minimization problem which takes only the 
sample points into consideration:

Choose wi,j and ci, i=1,2...L, j=1,2...M so as to minimize
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9.2.2 Data Interpolation 
TABLE I: 13 data points generated by using sum of three gaussians with  c1=0.2000   c2=0.6000   

c3=0.9000    w1=0.2000  w2=0.5000   w3=0.3000 σ=0.1000

Figure 9.5 Output of the RBF network 
trained to fit the datapoints given in 
Table 9.1

.
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9.3 Training RBF Networks 

• The training of  a RBF network can be formulated as a nonlinear unconstrained 
optimization problem given below:

• Given  input output training patterns (uk,yk),  k=1,2, ..K, choose wi,j and ci i=1,2...L, 
j=1,2...M so as to minimize

(9.3.1)

• Note that the training problem becomes quadratic once if ci’s (radial basis function 
centers) are known.
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9.3.1 Adjusting the widths 

• In its simplest form, all hidden units in the RBF network have the same width or degree 
of sensitivity to inputs. 

• However, in portions of the input space where there are few patterns, it is sometime 
desirable to have hidden units with a wide area of reception. 

• Likewise, in portions of the input space, which are crowded, it might be desirable to have 
very highly tuned processors with narrow reception fields. 

• Computing these individual widths increases the  performance of the RBF network at the 
expense of a more complicated training process.
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9.3.2 Adjusting the centers 
Remember that in a back propagation network, all weights in all of the layers are 
adjusted at the same time. 

In radial basis function networks, however, the weights into the hidden layer basis units 
are usually set before the second layer of weights is adjusted. As the input moves away 
from the connection weights, the activation value falls off. 

This behavior leads to the use of the term “center” for the first-layer weights. These 
center weights can be computed using Kohonen feature maps, statistical methods such 
as K-Means clustering, or some other means. 

In  any case, they are then used to set the areas of sensitivity for the RBF network’s 
hidden units, which then remain fixed. 
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9.3.3 Adjusting the weights 

Once the hidden layer weights are set, a second phase of training is used to adjust the 
output weights. 

This process typically uses the standard steepest descent algorithm. 

Note that the training problem becomes quadratic once if ci’s (radial basis function 
centers) are known. 


