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Introduction

Self organizing feature maps (SOFM) - also called Kohonen feature maps - are a special 
kind of neural networks that can be used for  clustering tasks. 

The goal of clustering is to reduce the amount of data by categorizing or grouping similar 
data items together.

Since SOFM learn a weight vector configuration without being told explicitly of the 
existence of clusters at the input, then it is said to undergo a process of self-organised or 
unsupervised learning. This is to be contrasted  to supervised learning, such as the delta 
rule or backpropagation where a desired output had to be supplied. 

In this chapter first clustering is introduced and then K means clustering algorithm is 
presented. Next, SOFM is explained in detail together with its training algoithm and its 
usage for clustering. Finally, the relation between SOFM and K-means clustering is 
explained.
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8.1. Clustering methods

The goal of clustering is to reduce the amount of data by categorizing or grouping similar 
data items together. 

Clustering methods can be divided into two basic types: hierarchical and partitional 
clustering. Within each of the types there exists a wealth of subtypes and different 
algorithms for finding the clusters. 

The clusters should be illustrated somehow to aid in understanding what they are like. 
For example in the case of the K-means algorithm the centroids that represent the 
clusters are still high-dimensional, and some additional illustration methods are needed
for visualizing them.
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8.1.1 Hierarchical Clustering

Hierarchical clustering proceeds successively by either merging smaller clusters into 
larger ones, or by splitting larger clusters. 

The clustering methods differ in the rule by which it is decided which two small clusters 
are merged or which large cluster is split. 

The end result of the algorithm is a tree of clusters called a dendrogram, which shows 
how the clusters are related. 

By cutting the dendrogram at a desired level a clustering of the data items into disjoint 
groups is obtained. 
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8.1.2 Partitional Clustering

Partitional clustering, on the other hand, attempts to directly decompose the data set into 
a set of disjoint clusters. 

The criterion function that the clustering algorithm tries to minimize may emphasize the 
local structure of the data, as by assigning clusters to peaks in the probability density 
function, or the global structure. 

Typically the global criteria involve minimizing some measure of dissimilarity in the 
samples within each cluster, while maximizing the dissimilarity of different clusters. 

A commonly used partitional clustering method, K-means clustering will be discussed in 
some detail since it is closely related to the SOM algorithm. 
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8.2. The K-Means Clustering Algorithm

In K-means clustering the criterion function is the average squared distance of the data 
items uk from their nearest cluster centroids, 

(8.2.1)

where  c(ui) is the index of the centroid (mean of the cluster) that is closest to ui and P is 
the number of samples.

One possible algorithm for minimizing the cost function begins by initializing a set of K 
cluster centroids denoted by mi, i=1..K.

The positions of the  mi are then adjusted iteratively by first assigning the data samples to 
the nearest clusters and then recomputing the centroids. 

The iteration is stopped when E does not change markedly any more. 
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8.2.1 The algorithm:

Suppose that we have P example feature vectors ui∈RN,  i=1..P and we know that they 
fall into K compact clusters, K < P.

Let mi be the mean of the vectors in Cluster-i. 

If the clusters are well separated, we can use a minimum-distance classifier to separate 
them. 

That is, we can say that u is in cluster Ck if || x – mk|| is the minimum of all the k distances. 

This suggests the following algorithm for finding the K means: 
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8.2.1 The algorithm:

Given ui∈RN,  i=1..P

1. Make initial, i.e. t=0, guesses for the means mk(0) for cluster Ck,  k=1..K

2. Use the means mk, k=1..K to classify the examples ui, i=1..N into clusters Ck(t) such that

3. Replace mk
, k=1..K with the mean of all of the examples for cluster Ck

4. Repeat steps 2 and 3 until there are no changes in any mean mk, k=1..K

where card(Ck(t) is the cardinality  of cluster Ck at iteration t, i.e. the number of elements 
in it. 
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8.2.1 The algorithm:

Figure 8.1 Means of the clusters move to the center of the clusters as the algorithm 
iterates  a) K=2  b) K=3  
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8.2.1. The algorithm

The results depend on the metric used to measure ||x - mi||.

• A potential problem with the clustering methods is that the choice of the number of 
clusters may be critical: quite different kinds of clusters may emerge when K is changed. 
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8.2.2 Initilization of the centroids:

Furthermore good initialization of the cluster centroids may also be crucial.

In the given algorithm, the way to initialize the means was not specified.

One popular way to start is to randomly choose K of the examples. 

The results produced depend on the initial values for the means, and it frequently 
happens that suboptimal partitions are found. 

The standard solution is to try a number of different starting points. 

It can happen that the set of examples closest to mk is empty, so that mk cannot be 
updated.
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8.3. Self Organizing Feature Maps

Self-Organizing Feature Maps (SOFM) also known as Kohonen maps or topographic 
maps were first introduced by von der Malsburg (1973) and in its present form by 
Kohonen (1982). 

SOM is a special neural network that accepts N-dimensional input vectors and maps 
them to the Kohonen (competition) layer, in which neurons are organized in an L-
dimensional lattice (grid) representing the feature space. 

Such a lattice characterizes a relative position of neurons with regards to its neighbours, 
that is their topological properties rather than exact geometric locations. In practice, 
dimensionality of the feature space is often restricted by its its visualisation aspect and 
typically is  L = 1, 2 or 3. 

The objective of the learning algorithm for the SOFM neural networks is formation of the 
feature map which captures of the essential characteristics of the N-dimensional input 
data and maps them on the typically 1-D or 2-D feature space.
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8.3.1 Network structure 

• The structure of a typical SOM network 
for L=2 is shown in Figure 8.2. It has N
input nodes and m-by-m output nodes. 
Each output node j in the SOFM network 
has a connection from each input node i
and wij denotes the connection weight 
between them.
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Figure 8.2 Network topology of the SOM

The weights of the connections from the input neurons to a single neuron in the 
competition layer are interpreted as a reference vector in the input space. 

That is, a SOFM basically represents a set of vectors in the input space: one vector for 
each neuron in the competition layer.

CHAPTER CHAPTER VI :VI : Data Clustering Data Clustering &&SelfSelf--Organizing Feature Maps Organizing Feature Maps 

8.3.1 Network structure 

x n

x 1
x 2

dm

d1

d2

d

d

d

2m

m+1

m+2

d

d

d

mxm

(m-1)m+1

(m-1)m+2

Inputs

• The weights of the connections from the input neurons to a single neuron in the 
competition layer are interpreted as a reference vector in the input space. 

• That is, a SOFM basically represents a set of vectors in the input space: one vector for 
each neuron in the competition layer.
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A SOFM is trained with a method that is called 
competition learning: When an input pattern is 
presented to the network, that neuron in the 
competition layer having the reference vector 
closest to the input pattern is determined, 

This neuron is called the winner neuron and it 
is the focal point of the weight changes. 

In pure competition only the weights of the 
connections leading to the winner neuron are 
changed. 

The changes are made in such a way that the 
reference vector represented by these weights 
is moved closer to the input pattern. 
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8.3.1 Network structure 

• During training the weigts are updated acoording to the  formula

(8.3.1)

where wij is the ith component of the weight vector wj of the neuron nj, and and ui is the ith
component of the pattern uk applied at the input layer,  η(t) is the learning rate and N(j,t)
is the neighborhood function which is changing in time

• The learning algorithm captures two essential aspects of the map formation, namely, 
competition and cooperation between neurons of the output lattice.
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8.3.2 Competition

Competition determines the winning neuron dwin, whose weight vector is the one closest 
to the applied input vector. 

For this purpose the input vector u is compared with each weight vector wj from the 
weight matrix W and the index of the winning neuron nwin is established considering the 
following formula. 

(8.3.2)j
j

winn wu −= minarg
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8.3.3 Cooperation 

In SOFMs, not only the weights of the connections to the winner neuron are adapted. 

Rather, there is a neighborhood relation defined on the competition layer which 
indicates which weights of other neurons should also be changed.

This neighborhood relation is usually represented as a (usually two-dimensional) 
grid, the vertices of which are the neurons. This grid most often is rectangular or 
hexagonal. 

During the learning process, the weights of all neurons in the competition layer that 
lie within a certain radius around the winner neuron with respect to this grid are also 
adapted, although the strength of the adaption may depend on their distance from 
the winner neuron.

The effect of this learning method is that the grid, by which the neighborhood relation 
on the competition layer is defined, is "spread out" over the region of the input space 
that is covered by the training patterns. 
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8.3.3 Cooperation 

All neurons nj located in a topological neighbourhood of the winning neurons nwin will 
have their weights updated usually with a strength N(j) related to their distance d(j) from 
the winning neuron, where d(j) can be calculated using the formula

(8.3.3)

where pos(.) is the position of the neuron in the lattice. The city-block distance or 
Euclidian distance can be used as norm.

)pos()pos()( winj nnjd −=
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8.3.4 Neighbourhood Function

The weights of all neurons within this square are 
updated with N(j)=1, while the others remaining 
unchanged. 

As the training progresses, this neighbourhood gets 
smaller and smaller, resulting in that only the neurons 
very close to the winner are updated towards the end 
of the training.

The training ends as remains no more neuron in the 
neighbourhood. Figure 8.3. Threshold 

neighbourhood, narrowing as 
training progresses
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8.3.4 Neighbourhood Function

Usually, the neighbourhood function, Ν(j), 
is chosen as an L-dimensional Gausssian 
function:

(8.3.5)

where σ2 is the variance parameter 
specifying the spread of the Gaussian 
function and it is decreasing as the training 
progresses as training progresses. 

Example of a 2-D Gaussian 
neighbourhood function is given in Figure 
8.4.
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Figure 8.4. 2-D Gaussian neighbourhood 
function for a 40 ×30 neuronal lattice
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8.3.4 Neighbourhood Function 

In its simplest form, a neighbourhood is rectengular  

(8.3.4)

where N(j,t) is used instead of N(j) since D(t) is a threshold value decreased via a cooling 
schedule as training progresses. 

For this neighbourhood function the distance is determined considering the distance in 
the lattice in each dimension, and the one having the maximum value is chosen as d(j).

For L=2, N(j) corresponds to a square around nwin having side length=2D(t)+1.
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8.3.5 Training SOFM 

There are two phases of operation in SOM: the training phase and the clustering phase. 

In the training phase, the network finds an output node such that the Euclidean distance 
between the current input vector and the weight set connecting the input units to this 
output unit is minimum. 

This node is called the winner and its weights and the weights of the neighboring output 
units of the winner are updated so that the new weight set is closer to the current input 
vector. 

The effect of update for each unit is proportional to a neighborhood function, which 
depends on the unit’s distance to the winner unit. This procedure is applied repeatedly for 
all input vectors until weights are stabilized. The choice of the neighborhood function, the 
learning rate, and the termination criteria are all problem dependent. 

The clustering phase is simple once the training phase is completed successfully. In this 
phase, after applying the input vector, only the winner unit is determined. 
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8.3.5 Training SOFM 

1. Assign small random values to weights wj = [ w1j ,w2j, ….wnj];

2.Choose a vector uk from the training set and apply it as  input;

3. Find the winning output node nwin by the following criterion:

wj is the weight vector connecting input nodes to the output node j;

4. Adjust the weight vectors according to the following update formula:

where wij is the ith component of the weight vector wj, η(t) is the learning rate and N(j,t) is 
the neighborhood function;

5. Repeat Steps 2 through 4 until no significant changes occur in the weights. 

j

j
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8.3.5 Training SOFM 

The learning rate η(t) is a decaying function of time; it is kept large at the beginning of the 
training and decreased gradually as learning proceeds. 

The neighborhood function N(j,t) is a window centered on the winning unit nwin found in 
Step 3, whose radius decreases with time. Neighborhood function determines the degree
that an output neuron j participates in training. This function is chosen such that the
magnitude of weight change decays with increase in distance of the neuron to the winner. 
This distance is calculated using the topology defined on the output layer of the network. 
Neighborhood function is usually chosen as rectangular, 2-dimensional Gaussian or 
Mexican hat windows. Also, the diameter of the neighborhood function decreases in time.
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8.3.5 Training SOFM: effects of number of nodes in K. layer
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Similar clusters are mapped to 
neighbouring neurons, each neuron 
representing one or more clusters

Similar clusters are mapped to 
neighbouring neurons again, more than 

one neurons  representing the same 
clusters
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8.3.6 Setting parameters

Feature map formation is critically dependent on the learning parameters, namely, the 
learning gain, η, and the spread of the neighbourhood function specified for the Gaussian 
case by the variance, σ2. In general, both parameters should be time-varying, but their 
values are selected experimentally. 

Usually, the learning gain should stay close to unity during the ordering phase of the 
algorithm which can last for, say, 1000 iteration. After that, during the convergence 
phase, should be reduced to reach the value of, say, 0.1.

The spread of the neighbourhood function should initially include all neurons for any 
winning neuron and during the ordering phase should be slowly reduced to eventually 
include only a few neurons in the winner's neighbourhood. During the convergence 
phase, the neighbourhood function should include only the winning neuron.
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8.3.7 Topological mapping 

In SOFM the neurons are located on a discrete lattice. 

In training not only the winning neuron but also its neighbors on the lattice are allowed to 
learn. 

This is the reason why  neighboring neurons gradually specialize to represent similar 
inputs, and the representations become ordered on the map lattice. 

As the training progresses, the winning unit and its neighbors adapt to represent the input 
even better by modifying their reference vectors towards the current input. 

This topological map also reflect the underlying distribution of the input vectors as it is 
illustraded in the figures 8.5 and 8.6.
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8.3.7 Topological mapping 
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8.4. SOFM versus K-means clustrering

Rigorous mathematical treatment of the SOFM algorithm has turned out to be extremely 
difficult in general (Kangas, 1994; and Kohonen, 1995). In the case of a discrete data set 
and a fixed neighborhood kernel, however, there exists an error function for the SOFM, 
[Kohonen, 1991, Ritter and Schulten, 1988] which is:

(8.4.1)

The weight update rule of the SOFM, corresponds to a gradient descent step in 
minimizing the above error function 
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8.4.1 Relation to K-means clustering.

Remember
(8.2.1)

(8.4.1)

• The cost function of the SOFM, Equation (8.4.1), closely resembles Equation (8.2.1), 
which the K-means clustering algorithm tries to minimize. The difference is that in the 
SOFM the distance of each input from all of the reference vectors (instead of just the 
closest one) is taken into account, weighted by the neighborhood kernel h. 

• Thus, the SOFM functions as a conventional clustering algorithm if the width of the 
neighborhood kernel is zero. 

∑ ∑
∈

−=
k kCiu

ki
kcE

2
α mu

2

)c(
1

)/1( i
i

P

i

PE
u

mu −= ∑
=


