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Introduction
The method of storing and recalling information and experiences in the brain is not 
fully understood. However, experimental research has enabled some understanding 
of how neurons appear to gradually modify their characteristics because of 
exposure to particular stimuli.  

The most obvious changes have been observed to occur in the electrical and 
chemical properties of the synaptic junctions. For example the quantity of chemical 
transmitter released into the synaptic cleft is increased or reduced, or the response 
of the post-synaptic neuron to receive transmitter molecules is altered.  

The overall effect is to modify the significance of nerve impulses reaching that 
synaptic junction on determining whether the accumulated inputs to post-synaptic 
neuron will exceed the threshold value and cause it to fire.

Thus learning appears to effectively modify the weighting that a particular input has 
with respect to other inputs to a neuron.

In this chapter, learning in feedforward networks will be considered. 
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6.1. Perceptron Convergence Procedure 

• Perceptron was introduced by Frank Rosenblatt in the late 1950's (Rosenblatt, 1958) with 
a learning algorithm on it. 

• Perceptron may have continuous valued inputs. 

• It works in the same way as the formal artificial neuron defined previously. 

• Its activation is determined by equation:

a=wTu + θ (6.1.1)

• Moreover, its output function is:

(6.1.2)

having value either +1 or -1. 
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6.1. Perceptron Convergence Procedure 

Figure 6.1. Perceptron
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6.1. Perceptron Convergence Procedure 

• Now, consider such a perceptron in N dimensional space (Figure 6.1), the equation

wTu +θ = 0 (6.1.3)

that is

w1u1+w2u2+...+wN uN + θ = 0 (6.1.4)

defines a hyperplane. 

• This hyperplane divides the input space into two parts such that at one side, the 
perceptron has output value +1, and in the other side, it is -1.
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6.1. Perceptron Convergence Procedure 

• A perceptron can be used to decide whether an input vector belongs to one of the two 
classes, say classes A and B.   

• The decision rule may be set as to respond as class A if the output is +1 and as class B if 
the output is -1.  

• The perceptron forms two decision regions separated by the hyperplane. 

• The equation of the boundary hyperplane depends on the connection weights and 
threshold. 
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6.1. Perceptron Convergence Procedure 

Example 6.1: When the input space is 
two-dimensional then the equation 

w1u1+w2u2 + θ= 0 (6.1.5)

defines a line as shown in the Figure 6.2. 

This line divides the space of input 
variables u1 and u2, which is a plane, 
into to two separate parts. 

In the given figure the elements of the 
classes A and B lies on the different 
sides of the line. 

Figure 6.2. Perceptron output defines a 
hyperplane that divides input space into two 
separate subspaces
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6.1. Perceptron Convergence Procedure 

• Connection weights and the threshold in a perceptron can be fixed or adapted by using a 
number of different algorithms. 

• The original perceptron convergence procedure developed by  [Rosenblatt, 1959] for 
adjusting weights is provided in the following.
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6.1. Perceptron Convergence Procedure 
Step 1: Initialize weights and threshold

Set each wj(0), for j=0,1,2,..,N, in w(0) to small random values. Here w=w(t) is the weight 
vector at iteration time t and the component w0=θ corresponds to the bias. 

Step 2. Present New Input and Desired output:
Present new continuous valued input vector uk along with the desired output yk,  such 
that:

Step 3. Calculate actual output
xk=f(wTuk)

Step 4. Adapt weights
w(t+1)=w(t)+η (yk-xk(t)) uk

where η is a positive gain fraction less than 1 

Step 5. Repeat steps 2-4 until no error occurs

y
if input is from class A
if input is from class B

k =
+
−

1
1
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6.1. Perceptron Convergence Procedure 

Example 6.2:

Figure 6.3 demonstrates how the line 
defined by the perceptrons parameters is 
shifted in time as the weights are updated. 

Although it is not able to separate the 
classes A and B with the initial weights 
assigned at time t=0, it manages to 
separate them at the end.

Figure 6.3. Perceptron convergence
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6.1. Perceptron Convergence Procedure 

• In [Rosenblatt, 1959] it is proved that if the inputs presented from the two classes are 
separable, that is they fall on opposite sides of some hyperplane, then the perceptron
convergence procedure always converges in time. Furthermore, it positions the final 
decision hyperplane such that it separates the samples of class A from those of class B.

Figure 6.4. (a) Overlapping distributions
(b) non linearly separable distribution 

One problem with the 
perceptron convergence 
procedure is that decision 
boundary may oscillate 
continuously when the 
distributions overlap or the 
classes are not linearly 
separable (Figure 6.4).

A

u1

u2

BA
u1

u2

B

CHAPTER CHAPTER VI :VI : Learning in Learning in FeedforwardFeedforward Neural Networks Neural Networks 

Figure 6.5. Types of regions that 
can be formed by single and 
multi-layer perceptrons (Adapted 
from Lippmann 89)
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6.2 LMS Learning Rule

• A modification to the perceptron convergence procedure forms the Least Mean Square  
(LMS) solution for the case that the classes are not separable. 

• This solution minimizes the mean square error between the desired output and the actual 
output of the processing element. 

• The LMS algorithm was first proposed for Adaline (Adaptive Linear Element) in [Widrow
and Hoff 60]. 
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6.2 LMS Learning Rule

• The structure of Adaline is shown in the Figure 6.6. The part of the Adaline that executes 
the summation is called Adaptive Linear Combiner

Figure 6.6 Adaline
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6.2 LMS Learning Rule
The output function of the Adaline can be represented by the identity function as: 

f(a)=a (6.2.1)  

• So the output can be written in terms of input and weights as:  

(6.2.2)

where the bias is implemented via a connection to  a constant  input u0, which means the 
input vector and the weight vector are of space R(N+1) instead of RN.

• The output equation of Adaline can be written as:

x=wTu (6.2.3)

where w and u are weight and input vectors respectively having dimension N+1.

x f a w uj j
j
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6.2 LMS Learning Rule

• Suppose that we have a set of input vectors uk, k=1..K, each having its own desired 
output value yk.

• The performance of the Adaline for a given input value uk can be defined by considering 
the difference between the desired output yk and the actual output xk, which is called error 
and denoted as ε.  

• Therefore, the error for the input uk is as follows:

εk=yk-xk=yk-wTuk (6.2.4)

• The aim of the LMS learning is to adjust the weights through a training set {(uk,yk)}, 
k=1..K, such that the mean of the square of the errors is minimum. 

• The mean square error is defined as:

(6.2.5)

where the notation <.> denotes the mean value. 

∑
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6.2 LMS Learning Rule
The mean square error can be rewritten as:

(6.2.6)

where  T denotes transpose and x is the outer vector product.

• Defining input correlation matrix R and a vector P as 

(6.2.7)
(6.2.8)

results in:

(6.2.9)

• The optimum value w* for the weight vector corresponding to the minimum of the mean 
squared error can be obtained by evaluating the gradient of e(w).

< >=< − >( ) ( )ε k k ky2 2w uT
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6.2 LMS Learning Rule

• The point which makes the gradient zero gives us the value of w*.  That is:  

(6.2.10)

• Here, the gradient is

(6.2.11)

and it is a vector extending in the direction of the greatest rate of change.

• The gradient of a function evaluated at some point is zero if the function has a maximum 
or minimum at that point. 

• The error function is of the second degree. So it is a paraboloid and it has a single 
minimum at point w*.
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6.2 LMS Learning Rule

• When we set the gradient of the mean square error to zero, this implies that

Rw*=P (6.2.12)

and then

w*=R-1P (6.2.13)
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6.3 Steepest Descent Algorithm. 

• The analytical calculation of the optimum weight vector for a problem is rather difficult in 
general. 

• Not only does the matrix manipulation get cumbersome for the large dimensions, but also 
each component of R and P itself is an expectation value. 

• Thus, explicit calculations of R and P require knowledge of the statistics of the input 
signal [Freeman 91].  

• A better approach would be to let the Adaline Linear Combiner to find the optimum 
weights by itself through a search over the error surface. 
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6.3 Steepest Descent Algorithm. 

• Instead of having a purely random search, some intelligence is added to the procedure 
such that the weight vector is changed by considering the gradient of e(w) iteratively 
[Widrow 60], according to formula known as delta rule:

w(t+1)=w(t)+∆w(t) (6.3.1)

where

∆w(t)=-η∇e(w(t)) (6.3.2)

In the above formula η is a small positive constant.
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6.3 Steepest Descent Algorithm. 

• For the real valued scalar function e(w)
on a vector space w∈RN, the gradient 
e(w) gives the direction of the steepest 
upward slope, so the negative of the 
gradient is the direction of the steepest 
descent. This fact is demonstrated in 
Figure 6.7 for a parabolic error surface on 
two dimensions.

• In Section 6.2 we have considered the 
linear output function in the derivation of 
the optimum weight w* for the minimum 
error. However in the general case, we 
should consider any nonlinearity f(.) at the 
output of the neuron. It should be noted 
that in such a case the error surface is no 
more a paraboloid, so it may have several 
local minima.

Figure 6.7 Direction of the steepest gradient 
descent on the paraboloid error surface on two-
dimensional weight space.  Only the 
equpotential curves of the error surface is 
shown instead of the 3D-error surface.

.   minimum
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6.3 Steepest Descent Algorithm. 

• For an input uk applied at time t, (εk(t))2 can be used as an approximation to <ε(k)2>, where

ε k(t)=yk-f(ak)=yk-f(w(t)Tuk) (6.3.3)

• Therefore, we obtain:

∇<(ε k)2> ~ ∇(ε k(t))2 = ∇(yk-f(ak))2 (6.3.4)

• With a differentiable function f(.) having derivative f'(.), it becomes

∇(yk-f(a))2= -2 εk (t) f ' (a) ∇ a (6.3.5)
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6.3 Steepest Descent Algorithm. 

• Since

∇ak= ∇ w(t)Tuk=uk (6.3.6)

the weight update formula becomes:

w(t+1)=w(t)+2ηεk(t) f'(a)uk. (6.3.7)

• Notice that for Adaline's linear output function:

f ' (a)=1 (6.3.8)

• For sigmoid function it is:
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6.3 Steepest Descent Algorithm. 

Step 1: Apply an input vector uk with an desired output value yk to the neuron's input
Step 2: By considering uk and using the current value of the weight vector determine the 

value of the activation vector ak:
ak=w(t)Tuk

Step 3: Determine the value of the derivative of the output function using the current value 
of activation ak, that is:

Step 4: Determine the value of error εk(t) as: 
ε k(t)= yk-f(ak)

Step 5: Update the weight vector with respect to following update formula
w(t+1)=w(t)+2η f'(ak) ε k(t)uk

Step 6: Repeat steps 1-5 until  < εk(t)> reduces to an acceptable level.

kaa

k

a
afaf

=

=
∂

∂ )()('

CHAPTER CHAPTER VI :VI : Learning in Learning in FeedforwardFeedforward Neural Networks Neural Networks 

6.3 Steepest Descent Algorithm. 

The parameter η in the algorithm 
determines the stability and the speed of 
convergence of the weight vector towards 
the minimum error value. 

The value of η should be tuned well. If it is 
chosen too small this effects considerably 
the convergence time. 

On the other hand, if changes are too large, 
the weight vector may wander around the 
minimum as shown in the Figure 6.8, 
without being able to reach it. Figure 6.8. Inappropriate value of learning 

rate may cause oscillations in the 
weight values without convergence
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6.3 Steepest Descent Algorithm. 

• Notice that, the iterative weight update by the delta rule is derived by assuming constant 
uk.

• Therefore, it tends to minimize the error with respect to applied uk. 

• In fact, we require the average error, that is:

(6.3.10)

to be minimum

• This implies that
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6.3 Steepest Descent Algorithm. 

• Therefore, the net change in wj after one complete cycle of pattern presentation is 
expected to be:

(6.3.12)

• However, this would be true that if the weights are not updated along a cycle, but only at 
the end.

• By changing the weights as each pattern is presented, we depart to some extend from 
the gradient descent in e.  

• Nevertheless, provided the learning rate is sufficiently small, this departure will be 
negligible and the delta rule will implement a very close approximation to gradient 
descent in mean squared error [Freeman 91].

∑
=

−=+
K

k

kk

jj wjK
twKtw

1

21)()(
∂

ε∂εη



Ugur HALICI - METU EEE - ANKARA 11/18/2004

EE543 - ANN - CHAPTER 6 15

CHAPTER CHAPTER VI :VI : Learning in Learning in FeedforwardFeedforward Neural Networks Neural Networks 

6.4. The Backpropagation Algorithm : Single Layer Network

• Consider a single layer multiple output 
network as shown in the Figure 6.9. 

• Here, we still have N inputs denoted uj,
j=1..N, but M processing elements whose 
activations and outputs are denoted as ai
and xi , i=1..M respectively. 

• wji is used to denote the strength of the 
connection from the jth input to the ith
processing element. 

• In vector notation wji is the jth component 
of weight vector wi, while uj is the jth
component of the input vector u. 

1

2 j N
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u u u
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u
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 x M x
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=1
1u

w ji

Figure 6.9. Single Layer Multiple 
output network
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6.4. The Backpropagation Algorithm : Single Layer Network

• Let uk and yk to represent the kth input sample and the corresponding desired output 
vector respectively 

• Let the error observed at the output i, when uk is applied at the input, be 

(6.4.1)

• If the error is to be written in terms of the input vector uk

and the weights wi, we obtain

(6.4.2) 
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6.4. The Backpropagation Algorithm : Single Layer Network

• If we take partial derivative with respect to wji by applying the chain rule 

(6.4.3)

where

(6.4.4)

and

(6.4.5)

we obtain

(6.4.6)
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6.4. The Backpropagation Algorithm : Single Layer Network

• If we define the total output error for input uk as the sum of the square of the errors at 
each neuron output, that is:

(6.4.7)

then partial derivative of the total error with respect to wji when uk is applied at the input 
can be written as:

(6.4.8)

which is

(6.4.9)
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6.4. The Backpropagation Algorithm : Single Layer Network

• By defining 

(6.4.10)

it can be reformulated as

(6.4.11)
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6.4. The Backpropagation Algorithm : Single Layer Network

• For the error to be minimum, the gradient of the total error with respect to the weights 
should be

(6.4.12) 

where 0 is the vector having N.M entries each having value zero. 

• In other words, it should be satisfied: 

(6.4.13)
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6.4. The Backpropagation Algorithm : Single Layer Network

• In order to reach the minimum of the total error, without solving the above equation, we 
apply the delta rule in the same way explained for the steepest descent algorithm:

w(t+1)=w(t)-∇ek (6.4.14)

in which

(6.4.15)

that is 

(6.4.16)
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6.4. The Backpropagation Algorithm : Multi Layer Network

• Now assume that another layer of neurons 
is connected to the input side of the output 
layer. 

• Therefore we have the input, hidden and 
the output layers as shown in Figure 6.10. 
In order to discriminate between the 
elements of the hidden and output layers 
we will use the subscripts L and o
respectively. 

• Furthermore, we will use h as the index on 
the hidden layer elements, while still using 
index j and i for the input and output layers
respectively.

Figure 6.10 Multilayer network
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6.4. The Backpropagation Algorithm : Multi Layer Network

• In such a network, the output value of ith neuron of output layer can be written as:

(6.4.17)

where  being the vector of output values at hidden layer that is connected as input to 
the output layer. The value of the hth element in xL

k is determined by the equation:

(6.4.18)

• Notice that
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6.4. The Backpropagation Algorithm : Multi Layer Network

• The partial derivative of the output of a neuron io of output layer with respect to hidden 
layer weight wjhL can be determined by applying the chain rule 

(6.4.20)

• By using Eq. (6.4.17) and (6.4.19) this can be written as

(6.4.21)
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6.4. The Backpropagation Algorithm : Multi Layer Network

• Then the partial derivative of the total error

(6.4.22)

with respect to the hidden layer weight can be written as

(6.4.23)
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6.4. The Backpropagation Algorithm : Multi Layer Network

• It can be reformulated as

(6.4.24)

• When defined

(6.4.25)

it becomes

(6.4.26).
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6.4. The Backpropagation Algorithm : Multi Layer Network

• Therefore, the weight update rule for the hidden layer 

(6.4.27)

can be reformulated in analogy with the weight update rule of the output layer, as

(6.4.28)
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6.4. The Backpropagation Algorithm : Multi Layer Network

• This weight update rule may be generalized for the networks having several hidden 
layers as: 

(6.4.29)

where L and (L-1) are used to denote any hidden layer and its previous layer 
respectively. 

• Furthermore,

(6.4.30)

where NL is the number of neurons at layer L.
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6.4. The Backpropagation Algorithm : Multi Layer Network

Step 0. Initialize weights: to small random values;
Step 1. Apply a sample: apply to the input a sample vector uk having desired output 

vector yk;
Step 2. Forward Phase:

Starting from the first hidden layer and propagating towards the output layer:
2.1. Calculate the activation values for the units at layer L as:

2.1.1. If L-1 is the input layer

2.1.2. If L-1 is a hidden layer

2.2. Calculate the output values for the units at layer L as:

in which use index io instead of hL if it is an output layer

∑
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6.4. The Backpropagation Algorithm : Multi Layer Network

Step 4. Output errors: Calculate the error terms at the output layer as:

Step 5.  Backward Phase Propagate error backward to the input layer through each 
layer L using the error term

in which, use io instead of  i(L+1) if  L+1 is an output layer;
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6.4. The Backpropagation Algorithm : Multi Layer Network

Step 6. Weight update: Update weights according to the formula 

Step7.  Repeat steps 1-6 until the stop criterion is satisfied, which may be chosen as the
mean of the total error 

is sufficiently small.
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