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CHAPTER VII 
 

Learning in Recurrent Networks 
 
 
We have examined the dynamics of recurrent neural networks in detail in Chapter 2. 
Then in Chapter 3, we used them as associative memory with fixed weights. In this 
chapter, the backpropagation learning algorithm that we have considered for feedforward 
networks in Chapter 6 will be extended to recurrent neural networks [Almeida 87, 88]. 
Therefore, the weights of the recurrent network will be adapted in order to use it as 
associative memory. Such a network is expected to converge to the desired output pattern 
when the associated pattern is applied at the network inputs. 
 
7.1.  Recurrent Backpropagation  
 
Consider the recurrent system shown in the Figure 7.1, in which there are N neurons, 
some of them being input units, and some others outputs. In such a network, the units, 
which are neither input nor output, are called hidden neurons. We will assume a network 
dynamic defined as: 
 

 )(∑ ++−=
j

ijjii
i xwfx

dt
dx

θ               (7.1.1) 

 
This may be written equivalently as  
 

 da
dt

a w f ai
i ji i i

j
= − + +∑ ( ) θ  (7.1.2) 

 
through a linear transformation. 
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Figure 7.1 Recurrent network architecture 
 
Our goal is to update the weights of the network so that it will be able to remember 
predefined associations, µk=(uk,yk), uk∈RN, yk∈RN, k=1.. K. With no loss of generality, 
we extended here the input vector u such that ui=0 if the neuron i is not an input neuron. 
Furthermore, we will simply ignore the outputs of the unrelated neurons. We apply an 
input uk to the network by setting 
                                 
 θi=ui

k    i=1..N (7.1.3) 

 
Therefore, we desire the network with an initial state x(0)=xk0 to converge to  
 
 xk(∞)=xk∞=yk (7.1.4) 
 

whenever uk is applied as input to the network. 
 
The recurrent backpropagation algorithm, updates the connection weights aiming to 
minimize the error 
 
 e k

i
i
k= ∑1

2
2( )ε  (7.1.5) 

 
so that the mean error is also minimized 

  
 e =<εk> (7.1.6) 

 
Notice that, ek and e are scalar values while εk is a vector defined as previously 
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 εk=yk-xk  (7.1.7) 
 
whose component εi

k, i=1..M, is  
 
 ε αi

k
i i

k
i
ky x= −( )  (7.1.8) 

 
In equation (7.1.8) the coefficient αi used to discriminate between the output neurons and 
the others by setting its value as  
 

 
⎩
⎨
⎧

=
otherwise

neuronoutputanisiif
i 0

1
α  (7.1.9) 

 
Therefore, the neurons, which are not output, will have no effect on the error.  

 
Notice that, if an input uk is applied to the network and if it is let to converge to a fixed 
point xk∞, the error depends on the weight matrix through these fixed points. The learning 
algorithm should modify the connection weights so that the fixed points satisfy Eq.  
(7.1.4), that is  
 
 x yi

k
i
k∞ =  (7.1.10) 

 
For this purpose, we let the system to evolve in the weight space along trajectories in the 
opposite direction of the gradient, that is  

 

 k

dt
d e∇−= ηw  (7.1.11) 

 
In particular wij should satisfy 
 

 
d w

dt w
ij k

ij
= −η ∂

∂
e  (7.1.12) 

  
Here η is a positive constant named the learning rate, which should be chosen so small  
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Since, 
 
 α ε εi i i=  (7.1.13) 
 
the partial derivative of ek given in Eq. (7.1.5) with respect to wsr becomes: 
 

 ∂
∂

ε
∂
∂

ek

sr
i
k i

k

sriw
x
w

= −∑  (7.1.14) 

 
On the other hand, since xk∞ is a fixed point, it should satisfy 
 

 
dx

dt
i
k∞

= 0 (7.1.15) 

 
for which  Eq. (7.1.1) becomes 
 
 x f w x ui

k
ji j

k
i
k

j

∞ ∞= +∑( )     (7.1.16) 

 
Therefore , 
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where 
 

 
∑ +∞=

∞ =′
j
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jxijwa

k
i k

ida
afdaf )()(  (7.1.18) 

 
 
Notice that, 
 

 
∂
∂

δ δ
w
w

ij
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js ir=  (7.1.19) 
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where δij is the Kronecker delta which have value 1 if i=j and 0 otherwise, resulting  
 
 x xj

k

j
js ir ir s

k∞ ∞∑ =δ δ δ  (7.1.20) 

 
Hence, 
 

 
∂
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By reorganizing the above equation, we obtain  
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Notice that, 
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Therefore, Eq. (7.1.22), can be written equivalently as, 
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or, 

 ∞∞
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∞ ′=′−∑ k
s

k
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sr

k
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ijiji
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xaf
w
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afw )())((( δ
∂
∂

δ   (7.1.25) 

 
If we define matrix Lk∞ and vector Rk∞ such that 

 
 L f a wij

k
ij i

k
ji

∞ ∞= − ′δ ( )   (7.1.26) 

 
and 
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 )( ∞∞ ′= k

iir
k
i afR δ  (7.1.27) 

 
the equation (7.1.25) results in 

 

 ∞∞∞∞ = k
s

kk

sr

k x
w

RxL
∂
∂  (7.1.28) 

 
Hence, we obtain, 
 

 ∞−∞∞ = k
s

kk

sr

x
w

RLx 1)(
∂
∂  (7.1.29) 

 
In particular, if we consider the ith row we observe that 
 

 ∂
∂ w

x L R x
sr

i
k k

ij
j

j s
k∞ ∞ − ∞= ∑( ( ) )1  (7.1.30) 

 
Since  
 
 ( ) ( ) ( ) ( )L f a L f ak

ij jr j
k k

ir r
k

j

∞ − ∞ ∞ − ∞′ = ′∑ 1 1δ  (7.1.31) 

 
by using (7.1.27) and (7.1.31) in equation (7.1.30), we obtain 
 

 ∂
∂ w

x L f a x
sr

i
k k

ir r
k

s
k∞ ∞ − ∞ ∞= ′( ) ( )1   (7.1.32) 

 
Insertion of  (7.1.32) in equation (7.1.14) and then (7.1.12), results in 
 

 d w
dt

L f a xsr

i
i
k k

ir r
k

s
k= ′∑ ∞ ∞ − ∞ ∞η ε ( ) ( )1 . (7.1.33) 

 
When the network with input uk has converged to xk∞, the local gradient for recurrent 
backpropagation at the output of the rth neuron may be defined in analogy with the 
standard backpropagation as 
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 1)()( −∞∞∞∞ ∑′= ir
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r Laf εδ  (7.1.34) 

 
So, it becomes simply  
 

 d w
dt

xsr
r
k

s
k= ∞ ∞ηδ  (7.1.35) 

 
In order to reach the minimum of the error ek, instead of solving the above equation, we 
apply the delta rule as it is explained for the steepest descent algorithm: 
 
 w(k+1)=w(k)-η∇ek (7.1.36) 
 
in which 
 
 ∞∞+=+ k

s
k
rsrsr xkwkw ηδ)()1(     (7.1.37) 

 
for s=1..N, r=1..N 

 
The recurrent backpropagation algorithm for recurrent neural network is summarized in 
the following. 
 

 
BACKPROPAGATION ALGORITHM FOR 

RECURRENT NEURAL NETWORKS 
 

Step 0. Initialize weights: to small random values 
 
Step 1. Apply a sample: apply to the input a sample vector uk having desired output  
             vector yk 
 
Step 2. Forward Phase:  
            Let the network relax according to the state transition equation 

 )( k
i

k
j

j
ji

k
i

k
i uxwfxx

dt
d

++−= ∑  

  
            to a fixed point xk∞ 
 
Step 3. Local Gradients: Compute the local gradient for each unit as: 
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 δ εr
k

r
k

i
k

i

k
irf a∞ ∞ ∞ ∞ −= ′ ∑( ) ( )L 1 

             where  ′ ∞ ∞ ∞f a Lr
k

i
k k( ), ,ε  are defined by Eqs. (7.1.18), (7.1.8) and (7.1.26)  

             respectively. 
 
Step 4.  Update weights according to the equation 
 ∞∞+=+ k

s
k
rsrsr xkwkw ηδ)()1(  

 
Step 5. Repeat steps 1-4 for k+1, until mean error   
 >−>=<=< ∞∑ 2

2
1 )( k

i
i

k
ii

k xyαee  

            is sufficiently small  
 

 
 
7.2 Backward Phase  
 
Notice that, in the computation of local gradients, it is needed to find out L-1, which 
requires global information processing. In order to overcome this limitation, a local 
method to compute gradients is proposed in [Almeida 88,89]. For this purpose an adjoint 
dynamical system in cooperation with the original recurrent neural network is introduced 
(Figure 7.2)  
 
The local gradient given in Eq (7.1.34) can be redefined as 
 
 ∞∞ ′= k

r
k
r

k
r vaf )( *δ   (7.2.1) 

 
by introducing a new vector variable v into the system whose rth component defined by 
the equation 
 
 vr

k

i

k
ir i

k∞ −= ∑( )* *L 1ε         (7.2.2) 
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Figure 7.2. Recurrent neural network and cooperating gradient network 

 
 
in which * is used instead of ∞ in the right handside to denote the fixed values of the 
recurrent network in order to prevent confusion with the fixed points of the adjoint 
network. They have constant values in the derivations related to the fixed-point vk∞ of the   
adjoint dynamic system.  
 

The equation (7.2.2) may be written in the matrix form as 
 
 vk∞=((Lk*)-1)Tεk* (7.2.3) 
 
or equivalently  
 
 (Lk*)Tvk∞=εk*. (7.2.4) 

 
that implies 
 
 ** k

r
k
j

j

k
jrvL ε=∞∑  (7.2.5) 

 
By using the definition of Lij given in Eq. (7.1.26), we obtain, 
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r

k
jrj

k
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j
jr vwaf εδ =′− ∞∑  (7.2.6) 

 
that is 
 
 ** )(0 k

r
k
jrj

j

k
j

k
r vwafv ε+′+−= ∞∞ ∑  (7.2.7) 

 
Such a set of equations may be assumed as a fixed-point solution to the dynamical system 
defined by the equation 
 

 ** )( k
rj

j
rj

k
jr

r vwafv
dt

dv ε+′+−= ∑ . (7.2.8) 

 
Therefore vk∞ and then δk∞ in equation (7.2.1) can be obtained by the relaxation of the 
adjoint dynamical system instead of computing L-1. Hence, a backward phase is 
introduced to the recurrent backpropagation as summarized in the following: 
 

RECURRENT BACKPROPAGATION ALGORITHM 
 HAVING BACKWARD PHASE  

 
Step 0. Initialize weights: to small random values 
 
Step 1. Apply a sample: apply to the input a sample vector uk having desired output  
             vector yk 
 
Step 2. Forward Phase:  
             Let the network to relax according to the state transition equation 
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Step 3. Compute  
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Step 4. Backward phase for local gradients : 
            Compute the local gradient for each unit as: 
 
 ∞∞ ′= k

r
k
r

k
r vaf )( *δ  

             where vr
k∞  is the fixed point solution of the dynamic system defined by the  

             equation:  
 

 ** )()( k
rj

j
rj

k
jr

r tvwafv
dt

dv ε+′+−= ∑ . 

 
Step 4.  Weight update: update weights according to the equation 
                 w k w k xsr sr r

k
s
k( ) ( )+ = + ∞ ∞1 ηδ  

 
Step 5. Repeat steps 1-4 for k+1, until the mean error   
                >−>=<=< ∞∑ 2

2
1 )( k

i
i

k
ii

k xyαee  

            is sufficiently small.  

 
 
7.3. Stability of Recurrent Backpropagation  
 
Due to difficulty in constructing a Lyapunov function for recurrent backpropagation, a 
local stability analysis [Almeida 87] is provided in the following. In recurrent 
backpropagation, we have two adjoint dynamic systems defined by Eqs. (7.1.1) and 
(7.2.8). Let x* and v* be stable attractors of these systems. Now we will introduce small 
disturbances ∆x and ∆v at these stable attractors and observe the behaviors of the 
systems.  
 
First, consider the dynamic system defined by the Eq. (7.1.1) for the forward phase and 
insert  x*+∆x instead of  x, which results in: 
 

 ))(()()( ***
ijj

j
jiiiii uxxwfxxxx

dt
d

+∆++∆+−=∆+ ∑  (7.3.1) 

satisfying 
 
 x f w x ui ji

j
j i

* *( )= +∑  (7.3.2) 
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If the disturbance ∆x is small enough, then a function g (.) at  x* +∆x  can be linearized 
approximately by using the first two terms of the Taylor expansion of the function around 
x*, which is  
 
 xxxxx ∆∇+≅∆+ T*** )()()( ggg  (7.3.3) 

 
where ∇g( )*x  is the gradient of g(.)  evaluated at x*. 
 
Therefore,  f (.) in Eq. (7.3.1) can be approximated as 
 

    
∑ ∑∑

∑
∆+′++=

+∆+

j
jjii

j
jji

j
ijji

ijj
j

ji

xwuxwfuxwf
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)()(

))((

**

*

  (7.3.4) 

 
where f'(.) is the derivative of f (.).  
 
Notice that 
 
 a w x ui ji

j
i i

* *= +∑  (7.3.5) 

 
Therefore, insertion of Eqs. (7.3.2)  and (7.3.5) in equation (7.3.4) results in 
 
 f w x x u x f a w xji

j
j j i i i ji j

j
( ( ) ) ( )* * *∑ ∑+ + = + ′∆ ∆  (7.3.6) 

 
Furthermore, notice that  
  

 d
dt

x x d
dt

xi i i( )* + =∆ ∆  (7.3.7) 

 
Therefore, by inserting equations (7.3.6) and (7.3.7) in equation (7.3.1), it becomes 
 

 ∑ ∆′+∆−=
∆

j
jjiii

i xwafx
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xd )( *  (7.3.8) 
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This may be written equivalently as 
 

 d x
dt

f a w xi
ij i ji j

j

∆
∆= − − ′∑ ( ( ) )*δ     (7.3.9) 

 
Referring to the definition of Lij given by Eq. (7.1.26), it becomes 
 

 d x
dt

L xi
ij j

j

∆
∆= −∑ *     (7.3.10) 

 
In a similar manner, the dynamic system defined for the backward phase by Eq. (7.2.8) at  
v*+∆v becomes 
 

 ***** )()()()( ijjij
j

jiiii vvwafvvvv
dt
d ε+∆+′+∆+−=∆+ ∑   (7.3.11)     

 
satisfying 
 
 **** )( ij

j
ijji vwafv ε+′=∑  (7.3.12) 

 
When the disturbance ∆v in is small enough, then linearization in Eq. (7.3.11) results in  
 

 ∑ ∆′−−=
∆

j
jijjji

i vwaf
dt

vd ))(( *δ  (7.3.13) 

 
This can be written shortly 
 

 d v
dt

L vi
ji j

j

∆
∆= −∑ *  (7.3.14) 

 
In matrix notation, the equation (7.3.10) may be written as  
 

 d
dt
∆ ∆x L x= − *  (7.3.15) 

 
In addition, the equation (7.3.14) is 
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 d
dt
∆

∆
v L v= −( )* T   (7.3.16) 

 
If the matrix L* has distinct eigenvalues, then the complete solution for the system of 
homogeneous linear differential equation given by (7.3.15) is in the form 
 
 tj

j
jj et λξγ −∑=∆ )(x  (7.3.17) 

 
where  ξj is the eigenvector corresponding to the eigenvalue λj of  L* and γj is any real 
constant to be determined by the initial condition.  
 
On the other hand, since L*T  has the same eigenvalues as L*, the solution (7.3.16) will 
be the same as given in Eq. (7.3.17) except the coefficients, that is 
 
 t

j
jj

jet λξβ −∑=∆ )(v       (7.3.18) 

 
If it is true that each λj has a positive real value then the convergence of both ∆x(t) and   
∆y(t) to vector 0 are guaranteed.  

 
It should be noticed that, if weight vector w is symmetric, it has real eigenvalues. Since L 
can be written as 
 
 WDDL ))(()1( iaf ′−=  (7.3.19) 

 
where D(ci) represents diagonal matrix having ith diagonal entry as ci, real eigenvalues of 
W imply that they are also real for L. 

 
 
 


