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CHAPTER IV 

 Combinatorial Optimization by 
Neural Networks 

 
 Several authors have suggested the use of neural networks as a tool to provide 

approximate solutions for combinatorial optimization problems such as graph matching, 

the traveling salesman problem, task placement in a distributed system, etc.  

 

In this chapter, we first give a brief description of combinatorial optimization problems.  

Next we explain in general how neural networks can be used in combinatorial 

optimization and then introduce Hopfield network as optimizer for two well known 

combinatorial optimization problems: the graph partitioning and the traveling salesman. 

Hopfield optimizer solves combinatorial optimization problems by gradient descent, 

which has the disadvantage of being trapped in local minima of the cost function.   

 

The efficiency of neural networks in solving of NP_hard combinatorial optimization 

problems has been investigated by several researchers [Bruck and Goodman 88, 90, Yao 

92]. It has been shown that even finding approximate solutions to NP_hard problems is 

not an easy task. By the use of techniques of complexity theory, it has been proved that 

no network of polynomial size exists to solve the traveling salesman problem unless 

NP=P [Bruck and Goodman 1990]. However, their parallel nature and good performance 

in finding approximate solution make the neural optimizers interesting. 
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4.1 Combinatorial Optimization Problems 
 

The problems typically having a large but finite set of solutions among which we want to 

find the one that minimizes or maximizes a cost function are often referred as 

combinatorial optimization problems. Since any maximization problem can be reduced 

to a minimization problem simply by changing the sign of the cost function, we will 

consider only the minimization problem with no loss of generality. An instance of a 

combinatorial optimization problem can be formalized as a pair (S,g). The solution 

space, denoted S, is the finite set of all possible solutions. The cost function, denoted by 

g, is a mapping from the set of solutions to real numbers, that is, g S→R [Aarts and 

Korst 89].  In the case of minimization, the problem is to find a solution S* ∈ S, called 

globally-optimal solution, which satisfies  

 

 S g S
S S

i
i

* min ( ).=
∈

 (4.1.1)  

 

Notice that for a given instance of the problem, such an optimal solution may not be 

unique. 

  

 Optimization problems can be divided into classes according to the time required to 

solve them. If  there exists an algorithm that solves the problem in a time that grows only 

polynomially with the size of the problem, then it is said to be polynomial. The set of 

polynomial time problems, denoted P, is a subclass of another class called NP. Here NP 

stands for non-deterministic polynomial, implying that a polynomial time algorithm 

exists for a nondeterministic Turing machine. However for the problems in NP but not 

P, there exists neither a polynomial time algorithm for deterministic Turing machine  

(although it exists for nondeterministic Turing Machine) nor a proof the non-existence of 

such an algorithm.  In spite of unavailability of polynomial time algorithms to solve this 
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kind of problems, a "guess" of the solution can be tested in polynomial time to find out 

whether or not it is the right one. 

 

Exercise: Explain nondeterministic polynomial problems in terms of Turing machine 

very briefly. 

 

An important subclass of NP is the NP_complete problems. They are problems in NP and 

characterized by the fact that each problem in the class can be reduced to any other 

member in polynomial time. Therefore, if one could find a deterministic algorithm that 

solves one of the NP_complete problems in polynomial time, then all of the NP_complete 

problems could be solved in polynomial time. In that case, P and NP_complete would be 

the same class. The probable situations are sketched in Figure 4.1. Emprically, the time it 

takes to solve an NP_complete problem tends to scale exponentially with the size of the 

problem [Hertz et al 91, Garey and Johnson 79] 

 

 

 

 

 

 

 

Figure 4.1 The class of NP problems a) assuming that P≠NP 
b) if  any p∈NP_complete becomes p∈P, then it implies P=NP 

 

Exercise: Explain the reduction of one problem to another in polynomial time.  

 

A combinatorial optimization problem of a major theoretical and practical interest, is the 

traveling salesman problem (TSP), and it has been subject of much work [Lawler et al 

85]. This problem is NP_complete, and therefore computationally intractable for large 

instances of the problem. It is of great practical use in various important areas such as 

NP

P 

NP-complete 

NP 

P=NP-complete 
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circuit placement in VLSI, tool motion in manufacturing, network design etc. Thus the 

development of methods searching for solutions that are close to the optimum, and yet 

not excessively time consuming, is the source for continued research. In the TSP, the 

shortest closed path traversing each city under consideration exactly once is searched. 

For TSP, the number of cities determines the size of the problem (Figure 4.2). 

 

 

Figure 4.2 The traveling salesman problem a) an instance with 4 cities b) the optimum solution 
b) a nonoptimum solution c) non feasible solution having some unvisited cities  

 

Another problem that we will consider in this chapter because of its simplicity in 

designing a neural optimizer is the vertex cover problem. It is also an NP_complete 

problem, therefore no efficient algorithms for its exact solution is available when the 

number of nodes in the graph is large. The problem size is determined by the number of 

nodes in the graph for which a minimum cover is searched. 
 

The formal problem can be stated as follows: Let  G=(V,E) be a graph where V={v1, 

v2,..,vN} is the vertices  and  E={(vi,vj)} is the  edges  of the graph. A cover C of G is a 

subset of V such that for each edge (vi, vj) in E, either vi or vj is in C.  A minimum cover 
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of G is a set C* such that the number of nodes in C* is the minimum among all the covers 

of G, that is |C*|≤|C|. 

For exaple for the sample graph given in Figure 4.3, the covers are  C1=(a,b,c,d,e), C2=(a,b,c,d), 

C3=(a,b,c,e), C4=(a,b,d,e), C5=(a,c,d,e), C6=(b,c,d,e), C7=(a,b,e), C8=(a,d,e), C9=(b,c,d), 

C10=(b,c,e), C11=(b,d,e), C12=(b,e) and the minimal cover is C12=(b,e). 

 

 

 

 

 

 

Figure 4.3 A sample graph 

  
If we have to solve an NP_complete problem, then a very long computation may be 

needed for an exact solution. The optimum solution of the vertex cover problem can be 

obtained by enumerating all the covers and then selecting the minimum one.  However 

such an enumerative search for the exact optimum solution have a time complexity of 

O(2n), where n is the number of vertices in the graph. Being an NP complete problem, 

finding the exact minimum cover of G is not practical when the number of vertices is 

very large.  Thus, in some cases, approximate algorithms are preferred [Will 86].  

 

Exercise: Explain what approximate solutions may be used for vertex cover problem.  

 

A heuristic solution to the problem using a greedy approach may be established as 

follows: First, the node having the highest degree in G is selected and included in C+, 

that is the cover being generated. Then, the node and all its adjacent edges all together 

with the related terminal nodes are removed from G and the procedure is repeated until 

all nodes in G have been removed. 

 

 

a

b c

d e
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4.2 Mapping an Optimization Problems onto Neural Networks 
 

Solving a combinatorial optimization problem aims to find the "best" or "optimal" 

solution among a finite or countably infinite number of alternative solutions. As an 

alternative to the conventional optimization methods, neural networks are used for the 

solution of combinatorial optimization problems. In general, a neural optimizer is a 

neural network whose neurons are affecting the problem solution. For instance neurons 

affecting the (city, position) pair of the tour can be used in the neural optimizer for 

solving the traveling salesman problem. If a neuron is "on", this implies that the 

corresponding city should be visited in the given position in the approximately optimal 

solution. Then strongly inhibitory links are established between neurons, which represent 

incompatible elements of the solution; for example, a city should not be visited twice, 

and a position should not be occupied by two different cities. Furthermore, inhibitory 

links representing the cost are placed between neurons. For example, the intensity of 

inhibitory links can represent the distances between cities in the traveling salesman 

problem. Once the model is set up, it is allowed to relax dynamically to a steady-state 

which should be of  "minimum energy" representing a quasi-minimal cost solution 

[Hopfield and Tank 85, Gelenbe 94]. 

 

 Hopfield network, Boltzmann machine, mean field network, Gaussian machine and 

several other neural networks can be used as neural optimizers. The units in these 

networks tend to optimize a global function of the state space, by using only local 

information. Mean Field, Boltzmann and Gaussian machines are stochastic in nature and 

allow escaping from local optima. 
 

In the following, how neural networks can be used to solve combinatorial optimization 

problems is explained in general: An instance of a combinatorial optimization problem 

can be considered as a tuple (S,S',g) where S is the finite set of solutions; S'  is the   set of 

feasible solutions that satisfy the constraints of the problem; and g: S→R is the cost 
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function assigning a real value to each solution. The aim is to find a feasible solution for 

which the cost function is optimal [Aarts and Korst 89]. 

 

In order to use a neural optimizer to solve combinatorial optimization problems, the state 

space of the network is mapped onto the set of solutions. The state space X of a neural 

optimizer is the set of all possible state vectors x whose components correspond to the 

neuron outputs. For this purpose, first the given problem is formulated as a 0-1 

programming problem. Then, a neural network is defined such that the state of each unit 

determines the value of a 0-1 variable. Thus, the neural network implements a bijective 

(one to one and onto) function m: X → S.  The next step is to determine the strengths of 

the connections such that the energy function is order-preserving. 

 

The energy function E of a neural network that implements a minimization problem 

(S,S',g) is called order-preserving if  

 

                                    g(m(xk)) < g(m(xl)) ⇒ E(xk) <  E(xl).   (4.2.1) 

 

for any xk, xl ∈X with m(xk), m(xl) ∈ S'          

 

Exercise: Explain order preservation in terms of traveling salesman problem. 

    

Another desired property of the network is feasibility. Let X* to denote the set of stable 

states of a neural network. The energy function E of the neural network is called feasible 

if each local minimum of the energy function corresponds to feasible solution, that is  

 

 m(X*) ⊆ S'    (4.2.2)    

where  

 

 m(X*) = { Si ∈ S   |   ∃xk ∈ X * : m(xk) = Si } .  (4.2.3) 
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Feasibility of the energy function implies that the solution achieved by the network will 

always be a feasible one, since a neural optimizer always converges to a configuration x∈

X* 

 

Exercise: Explain feasibility in terms of traveling salesman problem 

 

Note that, if the energy function is order preserving, then the energy will be minimal for 

configurations corresponding to an optimal solution (Figure 4.4). Furthermore, if the 

energy function is feasible, the network is guaranteed to converge to a feasible solution. 

Hence, feasibility and order-preservation of the energy function imply that the network 

will tend to find an optimal feasible solution for the given instance of the combinatorial 

optimization problem. 

 

Figure 4.4: The goal of a neural optimizer is to converge to the global minimum of the energy 
function 
 

Further notice that if {S*}⊂S'-m(X*), where S* is the minimum solution as defined by 

Eq. (4.1.1), in such a case, the neural network will never converge to a state 
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corresponding to the minimum solution, but to a near minimum one. The neural 

optimizers are usually designed such that m(X*)=S'  

 

4.3.  Hopfield Network as Combinatorial Optimizer   

 
In Section 4.2, we explained how neural networks could be used for combinatorial 

optimization in general. In this section, we will consider the Hopfield network in 

particular. We will explain the design process, that is how the number of units and the 

weights of the connections are decided, through the NP-complete problems provided in 

Section 4.1.  

 

Consider the continuous valued asynchronous Hopfield model in which the outputs of the 

neurons are computed from its inputs using the sigmoidal relation. That is, for neuron i, it 

is in the form: 

 

 x f a ai i i= = +( ) ( tanh( ))1
2 1 κ   (4.3.1)    

 

where κ is the gain constant and ai is the activation determined by the equation: 

 

 ij

N

j
jii xwa θ+= ∑

=1
     (4.3.2) 

 

As in the case of associative memory given in Chapter 3, we will consider again the 

extreme case κ→ ∞. However, the output transfer function of the neurons here is shifted 

so that it takes values between 0 and 1, in spite of -1 and 1. 

 

Still in this case, the energy function is [Hopfield 84, Hopfield and Tank 85]:  
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 E w x x xji i
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2
11 1

θ     (4.3.3) 

 

where xi is the output of neuron i, wji is the connection weight from neuron j to neuron i, 

θi is the input bias to neuron i and N is the number of neurons in the network.  

 

Notice that the energy function is bounded and has negative derivative when xi∈{0,1}, so 

it is a Lyapunov function. Therefore, the energy is to be minimized by the Hopfield 

network's state transitions. Furthermore notice that x=x2 whenever x∈{0,1}, hence the 

energy can be reorganized as: 

 

 E w x xji i
j

n

i

n
j= −

==
∑∑1

2
11

 (4.3.4) 

where wji=2θi 

 

Exercise:  What happens to the restriction wii=0? Is it still necessary for binary state 

Hopfield Network? 

 

Now our goal is to represent the vertex cover problem by a Hopfield network so that the 

cost of the problem will be minimized as the energy of the network decreases at each 

step.  

 

A solution to the vertex covering problem has the following constraints: 

1. Every edge in the graph must be adjacent to at least one of the vertices in the cover, 

2. There should be as few vertices in the cover as possible. 

 

The first constraint is necessary for the feasibility. The second one is, in fact, not a 

constraint but a statement for the minimization of cost function. The problem can be 

represented by a neural network in which each neuron corresponds to a vertex in the 



Ugur HALICI                                   ARTIFICIAL NEURAL NETWORKS                                  CHAPTER 4 

                                                                                                                                                

 

EE543 LECTURE NOTES  .  METU EEE  .  ANKARA                                                                                                   
 

69

graph. The outputs of neurons indicate whether the corresponding vertex is included in 

the cover or not. The case xi=1 indicates that vertex i is in the cover while xi=0 indicates 

it is not.   

 

The energy function should be formed so that it satisfies the constraints that we discussed 

above. We are thus dealing with a special case of a very general class of problems, 

namely to find the minimum of a function in the presence of constraints. The standard 

method of solution is to introduce the constraint via constants called Lagrange multipliers 

into the cost function, so the minimum of the cost function automatically satisfies the 

constraints for the feasibility. 

 

Let a 0-1 variable eij be assigned value 1 if there is an edge from vertex i to vertex j in the 

graph, and it is 0 otherwise. Below, the cost function to be minimized is formulated as 0-

1 programming  (Ghanwani 94): 

 

 C A e x e x x e B xij
j

N

i

N
i

j

N

i

N
ij i j

j

N

i

N
ij i

i

N
( ) ( )x = − + +

== == == =
∑∑ ∑∑ ∑∑ ∑

11 11 11 1
2   (4.3.5) 

 

The term with coefficient A in Eq. (4.3.5) is zero when the requirement for a valid cover 

has been met. That is, all the edges in the graph are adjacent to at least one of the vertices 

in the cover. The term with coefficient B increases the energy by an amount proportional 

to the number of vertices in the cover, emphasizing minimality. The constant part of the 

cost function can be dropped without affecting the solution. Hence the cost function  

becomes 

  

 ∑∑∑∑∑
== == =

++−=
n

i
iij
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n
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jiij

n

i

n

j
i xBexxexAC
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)2()(x  (4.3.6) 
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 By comparing the energy function given in Eq. (4.3.3) with the cost function in Eq. 

(4.3.6), we obtain: 

 

 w Aeij ij= −2  (4.3.7) 

and 

 θi ij
i

n
A e B= −

=
∑2

1
 (4.3.8) 

 

By this setting of the connection weights and thresholds, the energy function minimizes 

the cost function. In asynchronous network, the trajectory of states is highly dependent 

not only on the initial state of the network, but also on the order in which the processing 

elements are updated.  Incorporation of randomness in the update order of the neurons 

usually yields to better results. Note that, although the order in which the neurons 

updated is decided at random, the outputs of neurons are still computed deterministically. 

The network is observed to converge almost instantly even for a large number of neurons. 

It is reported in  [Ghanwani et al 94] that computing a set of solutions and then choosing 

the best among them dramatically improves the performance of the network, especially 

on smaller graphs.  

 

Exercise: What is the relation between A and B for having a feasible solution at each 

local minima? 

 

Now we will try to solve the traveling salesman problem using Hopfield network. TSP is 

a benchmark attempted by almost all methods developed for combinatorial optimization.  

This problem is also the one attempted by the Hopfield optimizer proposed in the 

classical paper [Hopfield 85]. 

 

TSP aims to find best order among the n cities to be visited. Expressed in a slightly 

different way, the visit order i in the tour should be determined for the each city α. 
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Introducing a square matrix containing nxn binary elements, the solution can be 

represented in 0-1 programming (Figure 4.5).  An entry having value "1" in the ith 

position of row α indicates that the visit order of city α is i.  The matrix corresponds to a 

feasible solution if and only if each row and column contains exactly one entry having 

value "1" [Muller 90]. 

 
Figure 4.5. Representation of the tour of Figure 4.2.b by an nxn matrix, in which the rows 

corresponds to the cities while columns are indicating the order of visit 
 

When a matrix of neurons is used to represent the problem, the energy of the network 

becomes: 

 

 ji

n n

i

n n

j
ji xxwE βα

α β
βα∑∑∑∑

= = = =

−=
1 1 1 1

,2
1   (4.3.9) 

 

where xαi is the output of neuron αi, wαi,βj  is the connection strength between the units 

αi and βj while wαi,αi is reletad to the bias  θαi such that wαi,αi=2θαi 

 

 

 

For TSP, we have the following constraints: 

1. Each city should be visited exactly once; 
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2. At each position of the travel route, there is exactly one city; 

3. The length of the tour should be the minimum. 

 

An appropriate choice for the cost function is [Abe 91]: 
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 (4.3.10) 

 

where A, B are the Lagrange multipliers used to combine the constraints in the cost 

function.  

 

The cost function can be written as  
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 (4.3.11) 

 

In order to have the cost function of Eq. (4.3.11) in a form similar to the energy function 

given in Eq. (4.3.9) it can be reorganized as: 
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 (4.3.12) 
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Since the constant terms have no effect on the location of the minima of the cost function, 

they can be eliminated.  Furthermore, xαi=xαi2 whenever xαi∈{0,1}. Therefore, the cost 

function can be written as:  
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     (4.3.13) 

 

Compare the energy function given by Eq. (4.3.9) and the cost function given in Eq. 

(4.3.13).  Setting the weights as:  

 

         ))(1()21()21( 1,1,, −+ +−−−−−−= ijijijijji DdBAw δδδδδδδ αβαβαβαββα  (4.3.14) 

 

makes the energy function order preserving. The constraints can be made equally 

weighted by setting A=B. In such a case the connection weights become: 

 

  ))(1()4( 1,1,, −+ +−−−+−= ijijijijji DdAw δδδδδδδ αβαβαβαββα  (4.3.15) 

 

 In order to have a feasible energy function, the inequality  

 

 A D d> 2 max( )
,α β

αβ  (4.3.16) 

 should be satisfied [Abe 91]. 

 

The method proposed in  [Aiyer et al 90] also optimizes the Hopfield and Tank approach. 

This method is based on the eigenvalue analysis of the connection matrix used in 

[Hopfield 85].  The improved weight matrix proposed in (Aiyer et al 1990) is: 
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