ARTIFICIAL NEURAL NETWORKS

EE 543 LECTURE NOTES, 2004

UĞUR HALICI

COMPUTER VISION AND INTELLIGENT SYSTEMS RESEARCH LABORATORY DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING MIDDLE EAST TECHNICAL UNIVERSITY, ANKARA, TURKEY

ARTIFICIAL NEURAL NETWORKS

CONTENTS

CHAPTER I FROM BIOLOGICAL NEURON TO ARTIFICIAL NEURAL NETWORKS 1

1.1. Biological Neuron1.2. Artificial Neuron Model1.3. Network of Neurons1.4.Network Architectures	
CHAPTER II RECURRENT NEURAL NETWORKS	15
 2.1 Dynamical Systems 2.2. Phase Space 2.3. Major Forms of Dynamical Systems 2.4. Gradient, Conservative and Dissipative Systems 2.5. Equilibrium States 2.6. Stability 2.7. Effects of inputs and the initial states on the attraction 2.8. Cohen-Grossberg Theorem 2.9 Hopfield Network 2.10. Discrete time representation of recurrent networks 	
CHAPTER III NEURAL NETWORKS AS ASSOCIATIVE MEMORY	43
3.1 Associative Memory3.2. Linear Associators as Interpolative Memory3.3. Hopfield Autossociative Memory3.4. Bidirectional Associative Memory	
CHAPTER IV COMBINATORIAL OPTIMIZATION BY NEURAL NETWORKS 4.1. Combinatorial Optimization Problems	59
4.1. Combinatorial Optimization Problem onto Neural Networks	

4.3. Hopfield Network as Combinatorial Optimizer

CHAPTER V

ANNEALING BY STOCHASTIC NEURAL NETWORK FOR OPTIMIZATION 75

5.1. Statistical Mechanics and Simulated Annealing5.2. Boltzmann Machine5.3. Mean Field Theory5.4. Mean Field Annealing5.5 Gaussian Machine	
CHAPTER VI LEARNING IN FEEDFORWARD NETWORKS	92
6.1 Perceptron Convergence Procedure6.2 LMS Learning Rule6.3. Steepest Descent Algorithm6.4. The Backpropagation Algorithm	
CHAPTER VII RECURRENT BACKPROPAGATION	112
7.1. Recurrent Backpropagation7.2. Backward Phase7.3. Stability of Recurrent Backpropagation	
CHAPTER VIII DATA CLUSTERING AND SELF ORGANIZING FEATURE MAPS	126
8.1. Clustering methods8.2. The K-Means Clustering Algorithm8.3. Self Organizing Feature Maps8.4. SOFM versus K-means clustrering	
CHAPTER IX RADIAL BASIS FUNCTION NETWORKS	139
9.1. The Structure of the RBF Networks9.2. Function approximation9.3 Training RBF Networks	

REFERENCES

148

THE HUNTING OF THE SNARK hit the eight : THE VANISHING

THEY sought it with thimbles, they sougt it with care; They pursued it with forks and hope; They threatened its life with a railway-share; They charmed it with similes and soap.

They Shuddered to think that the chase might fail, And the Beaver, excited at least, Went bounding along on the tip of its tail, For the daylight was nearly past.

'There is Thingumbob shouting!' the Bellman said. 'He is shouting like mad, only hark! He is waving his hands, he is wagging his head, He has certainly found a Snark!'

They gazed in delight, while the Butcher exclaimed, 'He was always a desperate wag' They Beheld him- their Baker - their hero unnamed -On the top of a neighbouring erag,

Erect and sublime, for one moment of time. In the next, that wild figure they saw (As if Stung by a spasm) plunge into a chasm, While they waited and listened in awe.

'It's a Snark!' was the sound that first came to their ears, And seemed almost too god to be true. Then followed a torret of laughter and cheers: Then the ominous words 'It's a Boo-'

Then, silence⁶⁴. some fancied they heard in the air A weary and wandering sight That sounded like 'jum!' but the others declare It was only a breeze that went by.

They hunted till darkness came on, but they found Not a button, or feather, or mark, By which they could tell that they stood on the ground Where the Baker had met with the Snark.

In the midst of his laughter and glee, He had softly and suddenly wanished away -For the Snark was Boojum, you see.

Lewis Carroll