
EE 442 Operating Systems Ch. 5 Deadlocks

Lecture Notes by Uğur Halıcı 47

Chapter 5

Deadlocks

5.1 Definition

In a multiprogramming system, processes request resources. If those resources are being
used by other processes then the process enters a waiting state. However, if other
processes are also in a waiting state, we have deadlock.

The formal definition of deadlock is as follows:

Definition: A set of processes is in a deadlock state if every process in the set is waiting for
an event (release) that can only be caused by some other process in the same set.

Example 5.1

Process-1 requests the printer, gets it
Process-2 requests the tape unit, gets it Process-1 and
Process-1 requests the tape unit, waits Process-2 are
Process-2 requests the printer, waits deadlocked!

In this chapter, we shall analyze deadlocks with the following assumptions:

• A process must request a resource before using it. It must release the resource after

using it. (request use release)

• A process cannot request a number more than the total number of resources available in

the system.

For the resources of the system, a resource table shall be kept, which shows whether each
process is free or if occupied, by which process it is occupied. For every resource, queues
shall be kept, indicating the names of processes waiting for that resource.

A deadlock occurs if and only if the following four conditions hold in a system
simultaneously:

1. Mutual Exclusion: At least one of the resources is non-sharable (that is; only a limited
number of processes can use it at a time and if it is requested by a process while it is
being used by another one, the requesting process has to wait until the resource is
released.).

EE 442 Operating Systems Ch. 5 Deadlocks

Lecture Notes by Uğur Halıcı 48

2. Hold and Wait: There must be at least one process that is holding at least one
resource and waiting for other resources that are being hold by other processes.

3. No Preemption: No resource can be preempted before the holding process

completes its task with that resource.

4. Circular Wait: There exists a set of processes: {P1, P2, ..., Pn} such that

P1 is waiting for a resource held by P2
P2 is waiting for a resource held by P3
...
Pn-1 is waiting for a resource held by Pn
Pn is waiting for a resource held by P1

Methods for handling deadlocks are:

• Deadlock prevention
• Deadlock avoidance
• Deadlock detection and recovery.

5.2 Resource Allocation Graphs

Resource allocation graphs are drawn in order to see the allocation relations of processes
and resources easily. In these graphs, processes are represented by circles and resources
are represented by boxes. Resource boxes have some number of dots inside indicating
available number of that resource, that is number of instances.

• If the resource allocation graph contains no cycles then there is no deadlock in the
system at that instance.

• If the resource allocation graph contains a cycle then a deadlock may exist.

• If there is a cycle, and the cycle involves only resources which have a single

instance, then a deadlock has occurred.

 rj pi ● Process pi is waiting for resource rj

 rj pi ● Process pi has allocated resource rj

 rj pi ● Process pi is waiting for resource rj

 rj pi ● Process pi has allocated resource rj

EE 442 Operating Systems Ch. 5 Deadlocks

Lecture Notes by Uğur Halıcı 49

Example 5.2

There are three cycles, so a deadlock may exists. Actually p1, p2 and p3 are deadlocked

Example 5.3

There is a cycle, however there is no deadlock. If p4 releases r2, r2 may be allocated to p3,
which breaks the cycle.

5.3 Deadlock Prevention

To prevent the system from deadlocks, one of the four discussed conditions that may create
a deadlock should be discarded. The methods for those conditions are as follows:

Mutual Exclusion:

In general, we do not have systems with all resources being sharable. Some resources like
printers, processing units are non-sharable. So it is not possible to prevent deadlocks by
denying mutual exclusion.

Hold and Wait:

One protocol to ensure that hold-and-wait condition never occurs says each process must
request and get all of its resources before it begins execution.

Another protocol is “Each process can request resources only when it does not occupies any
resources.”

p2

 r1●

p1

r2

r3●

p3
●
●

p3
p2

p4

r2●
● r1●

●

p1

EE 442 Operating Systems Ch. 5 Deadlocks

Lecture Notes by Uğur Halıcı 50

The second protocol is better. However, both protocols cause low resource utilization and
starvation. Many resources are allocated but most of them are unused for a long period of
time. A process that requests several commonly used resources causes many others to
wait indefinitely.

No Preemption:

One protocol is “If a process that is holding some resources requests another resource and
that resource cannot be allocated to it, then it must release all resources that are currently
allocated to it.”

Another protocol is “When a process requests some resources, if they are available, allocate
them. If a resource it requested is not available, then we check whether it is being used or it
is allocated to some other process waiting for other resources. If that resource is not being
used, then the OS preempts it from the waiting process and allocate it to the requesting
process. If that resource is used, the requesting process must wait.” This protocol can be
applied to resources whose states can easily be saved and restored (registers, memory
space). It cannot be applied to resources like printers.

Circular Wait:

One protocol to ensure that the circular wait condition never holds is “Impose a linear
ordering of all resource types.” Then, each process can only request resources in an
increasing order of priority.

For example, set priorities for r1 = 1, r2 = 2, r3 = 3, and r4 = 4. With these priorities, if
process P wants to use r1 and r3, it should first request r1, then r3.

Another protocol is “Whenever a process requests a resource rj, it must have released all
resources rk with priority(rk) ≥ priority (rj).

5.4 Deadlock avoidance

Given some additional information on how each process will request resources, it is possible
to construct an algorithm that will avoid deadlock states. The algorithm will dynamically
examine the resource allocation operations to ensure that there won't be a circular wait on
resources.

When a process requests a resource that is already available, the system must decide
whether that resource can immediately be allocated or not. The resource is immediately
allocated only if it leaves the system in a safe state.

A state is safe if the system can allocate resources to each process in some order avoiding
a deadlock. A deadlock state is an unsafe state.

Example 5.4

Consider a system with 12 tape drives. Assume there are three processes : p1, p2, p3.
Assume we know the maximum number of tape drives that each process may request:

 p1 : 10, p2 : 4, p3 : 9

Suppose at time tnow, 9 tape drives are allocated as follows :

EE 442 Operating Systems Ch. 5 Deadlocks

Lecture Notes by Uğur Halıcı 51

 p1 : 5, p2 : 2, p3 : 2

So, we have three more tape drives which are free.

This system is in a safe state because it we sequence processes as: <p2, p1, p3>, then p2
can get two more tape drives and it finishes its job, and returns four tape drives to the
system. Then the system will have 5 free tape drives. Allocate all of them to p1, it gets 10
tape drives and finishes its job. p1 then returns all 10 drives to the system. Then p3 can get
7 more tape drives and it does its job.

It is possible to go from a safe state to an unsafe state:

Example 5.5

Consider the above example. At time tnow+1, p3 requests one more tape drive and gets it.
Now, the system is in an unsafe state.

There are two free tape drives, so only p2 can be allocated all its tape drives. When it
finishes and returns all 4 tape drives, the system will have four free tape drives.

 p1 is allocated 5, may request 5 more → has to wait
 p3 is allocated 3, may request 6 more → has to wait

We allocated p3 one more tape drive and this caused a deadlock.

Banker's Algorithm (Dijkstra and Habermann)

It is a deadlock avoidance algorithm. The following data structures are used in the algorithm:

m = number of resources
n = number of processes

Available [m] : One dimensional array of size m. It indicates the number of available
resources of each type. For example, if Available [i] is k, there are k instances of resource ri.

Max [n,m] : Two dimensional array of size n*m. It defines the maximum demand of each
process from each resource type. For example, if Max [i,j] is k, process pi may request at
most k instances of resource type rj.

Allocation [n,m] : Two dimensional array of size n*m. It defines the number of resources of
each type currently allocated to each process.

Need [n,m] : Two dimensional array of size n*m. It indicates the remaining need of each
process, of each resource type. If Need [i,j] is k, process pi may need k more instances of
resource type rj. Note that Need [i,j] = Max [i,j] - Allocation [i,j].

Request [n,m] : Two dimensional array of size n*m. It indicates the pending requests of each
process, of each resource type.

Now, take each row vector in Allocation and Need as Allocation(i) and Need(i). (Allocation(i)
specifies the resources currently allocated to process pi.)

EE 442 Operating Systems Ch. 5 Deadlocks

Lecture Notes by Uğur Halıcı 52

Define the ≤ relation between two vectors X and Y , of equal size = n as :

 X ≤ Y ⇔ X [i] ≤ Y [i] , i = 1,2, ..., n
 X !≤ Y ⇔ X [i] > Y [i] for some i

The algorithm is as follows:

1. Process pi makes requests for resources. Let Request(i) be the corresponding request
vector. So, if pi wants k instances of resource type rj, then Request(i)[j] = k.

2. If Request(i) !≤ Need(i), there is an error.

3. Otherwise, if Request(i) !≤ Available, then pi must wait.

4. Otherwise, Modify the data structures as follows :

 Available = Available - Request(i)
 Allocation(i) = Allocation(i) + Request(i)
 Need(i) = Need(i) - Request(i)

5. Check whether the resulting state is safe. (Use the safety algorithm presented below.)

6. If the state is safe, do the allocation. Otherwise, pi must wait for Request(i).

Safety Algorithm to perform Step 5:

Let Work and Finish be vectors of length m and n, respectively.

1. Initialize Work = Available, Finish [j] = false, for all j.

2. Find an i such that Finish [i] = false and Need(i) ≤ Work

If no such i is found, go to step 4.

3. If an i is found, then for that i, do :

Work = Work + Allocation(i)
Finish [i] = true

Go to step 2.

4. If Finish [j] = true for all j, then the system is in a safe state.

Banker's algorithm is O(m × (n2)).

EE 442 Operating Systems Ch. 5 Deadlocks

Lecture Notes by Uğur Halıcı 53

Example 5.6: (Banker's algorithm)

Given

Available = []141

Max = ⎥
⎦

⎤
⎢
⎣

⎡
141
131

Allocation= ⎥
⎦

⎤
⎢
⎣

⎡
000
000

Need = ⎥
⎦

⎤
⎢
⎣

⎡
141
131

Request = ⎥
⎦

⎤
⎢
⎣

⎡
120
021

Request(1) is to be processed. If it is satisfied data would become:

Available = []120

Allocation= ⎥
⎦

⎤
⎢
⎣

⎡
000
021

Need = ⎥
⎦

⎤
⎢
⎣

⎡
141
110

Now, apply the safety algorithm:

Work = [0 2 1]

Finish = ⎥
⎦

⎤
⎢
⎣

⎡
false
false

i = 1 :

Need(1) = [0 1 1] ≤ Work ? Yes.
Work = Work + Allocation(1) = [1 4 1]
Finish (1) = true

i = 2 :

Need(2) = [1 4 1] ≤ Work ? Yes.
Work = Work + Allocation(2) = [1 4 1]
Finish (2)= true

EE 442 Operating Systems Ch. 5 Deadlocks

Lecture Notes by Uğur Halıcı 54

System is in a safe state, so do the allocation. If the algorithm is repeated for Request(2),
the system will end up in an unsafe state.

5.5 Deadlock Detection

If a system has no deadlock prevention and no deadlock avoidance scheme, then it needs a
deadlock detection scheme with recovery from deadlock capability. For this, information
should be kept on the allocation of resources to processes, and on outstanding allocation
requests. Then, an algorithm is needed which will determine whether the system has
entered a deadlock state. This algorithm must be invoked periodically.

Deadlock Detection Algorithm (Shoshani and Coffman)

Data Structure is as:

Available [m]
Allocation [n,m] as in Banker's Algorithm
Request [n,m] indicates the current requests of each process.

Let Work and Finish be vectors of length m and n, as in the safety algorithm.

The algorithm is as follows:

1. Initialize Work = Available
 For i = 1 to n do

If Allocation(i) = 0 then Finish[i] = true else Finish[i] = false

2. Search an i such that

Finish[i] = false and Request(i) ≤ Work

 If no such i can be found, go to step 4.

3. For that i found in step 2 do:

 Work = Work + Allocation(i)

Finish[i] = true

 Go to step 2.

4. If Finish[i] ≠ true for a some i then the system is in deadlock state else the system is safe

EE 442 Operating Systems Ch. 5 Deadlocks

Lecture Notes by Uğur Halıcı 55

Example 5.7

Examine whether the system whose resource allocation graph is given below is deadlocked
or not.

First, let’s form the required structures:

Available = [0 0 0]

Allocation =

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

100
100
010
001

Request =

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

000
001
100
110

Finish =

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

False
False
False
False

Work = [0 0 0]

Request(4) ≤ Work → i = 4:

Work = Work + Allocation(4) = [0 0 0] + [0 0 1] = [0 0 1] ;
Finish[4] = True

Request(2) ≤ Work → i = 2:

p1

r1●

p3

r2

r3●

p2
●
●

p4

EE 442 Operating Systems Ch. 5 Deadlocks

Lecture Notes by Uğur Halıcı 56

Work = Work + Allocation(2) = [0 0 1] + [0 1 0] = [0 1 1] ;
Finish[2] = True

Request(1) ≤ Work→ i = 1:

Work = Work + Allocation(1) = [0 1 1] + [1 0 0] = [1 1 1] ;
Finish[1] = True

Request(3) ≤ Work → i = 3:

Work = Work + Allocation(3) = [1 1 1] + [0 0 1] = [1 1 2] ;
Finish[3] = True

Since Finish[i] = true for all i, there is no deadlock in the system .

Recovery From Deadlock

If the system is in a deadlock state, some methods for recovering it from the deadlock state
must be applied. There are various ways for recovery:

• Allocate one resource to several processes, by violating mutual exclusion.
• Preempt some resources from some of the deadlocked processes.
• Abort one or more processes in order to break the deadlock.

If preemption is used:

1. Select a victim. (Which resource(s) is/are to be preempted from which process?)

2. Rollback: If we preempt a resource from a process, roll the process back to some safe

state and mak it continue.

Here the OS may be probably encounter the problem of starvation. How can we guarantee
that resources will not always be preempted from the same process?

In selecting a victim, important parameters are:

• Process priorities
• How long the process has occupied?
• How long will it occupy to finish its job
• How many resources of what type did the process use?
• How many more resources does the process need to finish its job?
• How many processes will be rolled back? (More than one victim may be selected.)

For rollback, the simplest solution is a total rollback. A better solution is to roll the victim
process back only as far as it’s necessary to break the deadlock. However, the OS needs to
keep more information about process states to use the second solution.

To avoid starvation, ensure that a process can be picked as a victim for only a small number
of times. So, it is a wise idea to include the number of rollbacks as a parameter.

EE 442 Operating Systems Ch. 5 Deadlocks

Lecture Notes by Uğur Halıcı 57

QUESTIONS

1. For each of the following resource allocation graphs, find out and explain whether there is
a deadlock or not

a.

b.

c.

p1

 r1●

p3

r2●

p2
r3 ●

p1
 r4●

p3

r3●

p2

 r2 ● ● ●

 r1
●
●

p4

● ●

● ●

r3

●

 r1●

p2
p1

p3
p4

r4

r2

EE 442 Operating Systems Ch. 5 Deadlocks

Lecture Notes by Uğur Halıcı 58

d.

2. A computer system has m resources of the same type and n processes share these
resources. Prove or disprove the following statement for the system:

This system is deadlock free if sum of all maximum needs of processes is less than m+n.

3. There are four processes which are going to share nine tape drives. Their current and
maximum number of allocation numbers are as follows :

process current maximum
p1 3 6
p2 1 2
p3 4 9
p4 0 2

a. Is the system in a safe state? Why or why not?

b. Is the system deadlocked? Why or why not?

p2

p1

r1
●

p3

r3

● ● ●

p4

r2

●

EE 442 Operating Systems Ch. 5 Deadlocks

Lecture Notes by Uğur Halıcı 59

4. Given the following resource allocation diagram,

a. If another instance of resource r1 is made available, is the deadlock resolved ? If yes
specify the allocation sequence, if no explain why?

b.& c. repeat part a. for resource r2 and r3.

5. Given that all the resources are identical, they can be acquired and released strictly one
at a time, and no process ever needs more than the total resources on the system, state
whether deadlock can occur in each of the following systems. Explain why or how.

 Number of Number of
 processes resources

a. 1 1
b. 1 2
c. 2 1
d. 2 2
e. 2 3

6. a. What are the four conditions necessay for deadlock to appear?

b. Cinderella and the Prince are getting divorced. To divide their property, they have agreed
on the following algorithm. Every morning, each of one may send a letter to the other's
lawyer requesting one item of property. Since it takes a day for letters to be delivered, they
have agreed that if both discover that they have requested the same item on the same day,
the next day they will send a letter cancelling the request. Among their property is the glass
shoe, their dog Woofer, Woofer's doghouse, their canary Tweeter, Tweeter's cage and a
sword. The animals love their houses, so it has been agreed that any division of property
separating an animal from its house is invalid, requiring the lawyers to negotiate on which
items they already have should be returned back. Unfortunately the lawyers are stubborn
and never agree. Is deadlock or starvation possible in such a scheme? Explain.

c. What happens if it has been agreed that in the case of any division of property separating
an animal from its house the whole division to start over from scratch, instead of letting the
lawyers to discuss. Explain if starvation or deadlock possible now.

p1

 r1●

p3

r3● p2 ●

p4

r2

EE 442 Operating Systems Ch. 5 Deadlocks

Lecture Notes by Uğur Halıcı 60

7. Given the following resource allocation diagram:

a. Apply the deadlock detection algorithm and either indicate why the system is deadlocked,
or specify a safe allocation sequence.

b. If the process P2 also request 2 instances of resource r1, does the system enter a
deadlock? Why?

c. If a deadlock occurs in part a. and/or b., killing which process would resolve the
deadlock?

d. If the maximum declared needs are:

 process r1 r2 r3 r4
 P1 4 0 0 0
 P2 1 3 1 1
 P3 0 0 2 1
 P4 1 1 1 0
 P5 1 0 1 1

does the current allocation given in part a constitute a safe state? Why?

p2

●

p3

r3

 ● ● ●

p4
r1

 ● ● ● ●

p1

p5

 ● ●

r2 r4

EE 442 Operating Systems Ch. 5 Deadlocks

Lecture Notes by Uğur Halıcı 61

8. Explain if the system in the figure is dedlocked. If not, give an execution order of the
processess which successfully terminates.

9. a. Explain if the following system is deadlocked or not?

b. For the following resource allocation graph, for deadlock detection show the current
contents of the AVAILABLE, ALLOCATION, REQUEST .

p1

 r1●

p3

r2●

p5

r3 ●
●

p4 r4

●

p2

p1

 r1●

p3

p5

p4
p2

r4

●
●

r2

●
●

r3

●
●

