
EE442 Operating Systems Ch. 3 Memory Management

Lecture Notes by Uğur Halıcı 18

Chapter 3
Memory Management

In a multiprogramming system, in order to share the processor, a number of processes must
be kept in memory. Memory management is achieved through memory management
algorithms. Each memory management algorithm requires its own hardware support. In this
chapter, we shall see the partitioning, paging and segmentation methods.

In order to be able to load programs at anywhere in memory, the compiler must generate
relocatable object code. Also we must make it sure that a program in memory, addresses
only its own area, and no other program’s area. Therefore, some protection mechanism is
also needed.

3.1 Fixed Partitioning

Fixed Partitioning with Swapping

This is a version of fixed partitioning that uses RRS with some time quantum. When time
quantum for a process expires, it is swapped out of memory to disk and the next process in
the corresponding process queue is swapped into the memory.

 Memory

OS

(n KB) Small

(3n KB)

Medium

(6n KB)

Large

 OS

2K

P1

6K

P2

12K

empty

P3

P4 P5

empty

In this method, memory is divided into partitions
whose sizes are fixed. OS is placed into the
lowest bytes of memory. Processes are
classified on entry to the system according to
their memory they requirements. We need one
Process Queue (PQ) for each class of process.
If a process is selected to allocate memory,
then it goes into memory and competes for the
processor. The number of fixed partition gives
the degree of multiprogramming. Since each
queue has its own memory region, there is no
competition between queues for the memory.

EE442 Operating Systems Ch. 3 Memory Management

Lecture Notes by Uğur Halıcı 19

Normally, a process swapped out will eventually be swapped back into the same partition.
But this restriction can be relaxed with dynamic relocation.

In some cases, a process executing may request more memory than its partition size. Say
we have a 6 KB process running in 6 KB partition and it now requires a more memory of 1
KB. Then, the following policies are possible:

• Return control to the user program. Let the program decide either quit or modify its

operation so that it can run (possibly slow) in less space.

• Abort the process. (The user states the maximum amount of memory that the process

will need, so it is the user’s responsibility to stick to that limit)

• If dynamic relocation is being used, swap the process out to the next largest PQ and

locate into that partition when its turn comes.

The main problem with the fixed partitioning method is how to determine the number of
partitions, and how to determine their sizes.

If a whole partition is currently not being used, then it is called an external fragmentation.
And if a partition is being used by a process requiring some memory smaller than the
partition size, then it is called an internal fragmentation.

3.2 Variable Partitioning

With fixed partitions we have to deal with the problem of determining the number and sizes
of partitions to minimize internal and external fragmentation. If we use variable partitioning
instead, then partition sizes may vary dynamically.

In the variable partitioning method, we keep a table (linked list) indicating used/free areas in
memory. Initially, the whole memory is free and it is considered as one large block. When a
new process arrives, the OS searches for a block of free memory large enough for that
process. We keep the rest available (free) for the future processes. If a block becomes free,
then the OS tries to merge it with its neighbors if they are also free.

There are three algorithms for searching the list of free blocks for a specific amount of
memory.

First Fit : Allocate the first free block that is large enough for the new process. This is a fast
algorithm.

 OS
2K P1 (2K)

6K Empty (6k)

12K

P2 (9K)

 Empty (3K)

External
fragmentation

Internal
fragmentation

In this composition of memory, if a
new process, P3, requiring 8 KB of
memory comes, although there is
enough total space in memory, it can
not be loaded because fragmentation.

EE442 Operating Systems Ch. 3 Memory Management

Lecture Notes by Uğur Halıcı 20

Best Fit : Allocate the smallest block among those that are large enough for the new
process. In this method, the OS has to search the entire list, or it can keep it sorted and stop
when it hits an entry which has a size larger than the size of new process. This algorithm
produces the smallest left over block. However, it requires more time for searching all the list
or sorting it.

Worst Fit : Allocate the largest block among those that are large enough for the new
process. Again a search of the entire list or sorting it is needed. This algorithm produces the
largest over block.

Example 3.1
Consider the following memory map and assume a new process P4 comes with a memory
requirement of 3 KB. Locate this process.

a. First fit algorithm allocates from the 10 KB block.
b. Best fit algorithm allocates from the 4 KB block.
c. Worst fit algorithm allocates from the 16 KB block.

New memory arrangements with respect to each algorithms will be as follows:

 First Fit Best Fit Worst Fit

At this point, if a new process, P5 of 14K arrives, then it would wait if we used worst fit
algorithm, whereas it would be located in cases of the others.

Compaction: Compaction is a method to overcome the external fragmentation problem. All
free blocks are brought together as one large block of free space. Compaction requires
dynamic relocation. Certainly, compaction has a cost and selection of an optimal compaction
strategy is difficult. One method for compaction is swapping out those processes that are to
be moved within the memory, and swapping them into different memory locations.

OS
P1
<free> 10 KB
P2
<free> 16 KB
P3
<free> 4 KB

OS
P1
P4
<free> 7 KB
P2
<free> 16 KB
P3
<free> 4 KB

OS
P1
<free> 10 KB
P2
<free> 16 KB
P3
P4
<free> 1 KB

OS
P1
<free> 10 KB
P2
P4
<free> 13 KB
P3
<free> 4 KB

OS
P1
<free> 20 KB
P2
<free> 7 KB
P3
<free> 10 KB

OS
P1
P2
P3
<free> 37 KB

Compaction

EE442 Operating Systems Ch. 3 Memory Management

Lecture Notes by Uğur Halıcı 21

3.3 Paging

Paging permits a program to allocate noncontiguous blocks of memory. The OS divide
programs into pages which are blocks of small and fixed size. Then, it divides the physical
memory into frames which are blocks of size equal to page size. The OS uses a page table
to map program pages to memory frames. Page size (S) is defined by the hardware.
Generally page size is chosen as a power of 2 such as 512 words/page or 4096 words/page
etc.

With this arrangement, the words in the program have an address called as logical address.
Every logical address is formed of

• A page number p where p = logical address div S
• An offset d where d = logical address mod S

When a logical address <p, d> is generated by the processor, first the frame number f
corresponding to page p is determined by using the page table and then the physical
address is calculated as (f*S+d) and the memory is accessed.

The address translation in paging is shown below

 Logical Memory Page Table Physical Memory

P0

P1

P2

P3

page frame Attributes
0 4
1 3
2 1
3 5

 f0

P2 f1

 f2

P1 f3

P0 f4

P3 f5

page frame Attributes

 p f

Logical memory Physical memory

Page Table

p d

p
d

f d

Logical address Physical address

f
d

EE442 Operating Systems Ch. 3 Memory Management

Lecture Notes by Uğur Halıcı 22

Example 3.2

Consider the following information to form a physical memory map.
Page Size = 8 words
Physical Memory Size = 128 words
A program of 3 pages where P0 f3; P1 f6; P2 f4

 Logical Program Physical Memory

How to Implement The Page Table?

Every access to memory should go through the page table. Therefore, it must be
implemented in an efficient way.

a. Using fast dedicated registers

Keep page table in fast dedicated registers. Only the OS is able to modify these registers.
However, if the page table is large, this method becomes very expensive since requires too
many registers.

Word 0
Word 1 Page 0

… (P0)
Word 7
Word 8
Word 9 Page 1

… (P1)
Word 15
Word 16
Word 17 Page 2

… (P2)
Word 23

… …
Word 0
Word 1 Frame 3

… (f3)
Word 7

Word 16
Word 17 Frame 4

… (f4)
Word 23

… …

Word 8
Word 9 Frame 6

… (f6)
Word 15

… …

Page Table

Page Frame
0 3
1 6
2 4

Program
Line

Logical
Address

Offset Page
Number

Frame
Number

Physical
Address

Word 0 00 000 000 00 011 011 000
Word 1 00 001 001 00 011 011 001

… … … … … …
Word 7 00 111 111 00 011 011 111
Word 8 01 000 000 01 110 110 000
Word 9 01 001 001 01 110 110 001

… … … … … …
Word 15 01 111 111 01 110 110 111
Word 16 10 000 000 10 100 100 000
Word 17 10 001 001 10 100 100 001

…
Word 23 10 111 111 10 100 100 111

EE442 Operating Systems Ch. 3 Memory Management

Lecture Notes by Uğur Halıcı 23

Given a logical address to access the word in physical memory, first access the PT stored in
registers, which requires register access time (rat), and then find out the physical address
and access the physical memory, which requires memory access time (mat). Therefore
effective memory access time (emat) becomes:

 emat= rat + mat

b. Keep the page table in main memory

In this method, the OS keeps a page table in the memory. But this is a time consuming
method. Because for every logical memory reference, two memory accesses are required:
1. To access the page table in the memory, in order to find the corresponding frame number.
2. To access the memory word in that frame

.

In this approach emat is:

emat= 2 * mat

p d

Logical address

p<PTLR?

NO

ERROR

Access PT
entry
in Memory
at address
PTBR + p

mat

f d

Physical address

Access
memory

mat

PTBR: Page Table Base Register
PTLR: Page Table Length Register

p d

Logical address

p<PTLR?

NO

ERROR

Access PT
in Registers

rat

f d

Physical address

Access
memory

mat

PTLR: Page Table Length Register

YES

EE442 Operating Systems Ch. 3 Memory Management

Lecture Notes by Uğur Halıcı 24

c. Use content-addressable associative registers

These are small, high speed registers built in a special way so that they permit an
associative search over their contents. That is, all registers may be searched in one machine
cycle simultaneously. However, associative registers are quite expensive. So, a small
number of them should be used.

When a logical memory reference is made, first the corresponding page number is searched
in associative registers. If that page number is found in one associative register (hit) then the
corresponding frame number is get, else (miss) the page table in memory is accessed to find
the frame number and that <page number, frame number> pair is stored into associative
registers. Once the frame number is obtained, the memory word is accessed.

The hit ratio is defined as the percentage of times that a page number is found in associative
registers. Hit ratio is important in performance of the system since it affects the effective
memory access time. In the case of finding the page number in associative registers, only
one memory access time is required whereas if it cannot be found two memory accesses are
needed. So, greater the hit ratio, smaller the effective memory access time. Effective
memory access time is calculated as fallows:

 emat= h *ematHIT + (1-h) * ematMISS

where

h = The hit ratio
ematHIT = effective memory access time when there is a hit = rat + mat
ematMISS = effective memory access time when there is a miss = rat + mat + mat

p d

Logical address

p<PTLR?

NO

ERRO

Search PT
in AR

rat

f d

Physical address

PTBR: Page Table Base Register
PTLR: Page Table Length Register

Access PT
entry
in Memory
at address
PTBR + p

mat

f d

Physical address

Access
memory

mat

YES
FOUND?

 NO
(miss)

YES (hit)

EE442 Operating Systems Ch. 3 Memory Management

Lecture Notes by Uğur Halıcı 25

Example 3.3

Assume we have a paging system which uses associative registers. These associative
registers have an access time of 30 ns, and the memory access time is 470 ns. The system
has a hit ratio of 90 %.

Now, if the page number is found in one of the associative registers, then the effective
access time:

ematHIT = 30 + 470 = 500 ns.

Because one access to associative registers and one access to the main memory is
sufficient.

On the other hand, if the page number is not found in associative registers, then the effective
access time:

 ematMISS = 30 + (2 * 470) = 970 ns.

Since one access to associative registers and two accesses to the main memory iare
required.

Then, the emat is calculated as follows:

emat = 0.9 * 500 + 0.1 * 970
 = 450 + 97 = 547 ns

Sharing Pages

Sharing pages is possible in a paging system, and is an important advantage of paging. It is
possible to share system procedures or programs, user procedures or programs, and
possibly data area. Sharing pages is especially advantageous in time-sharing systems. A
reentrant program (non-self-modifying code = read only) never changes during execution.
So, more than one process can execute the same code at the same time. Each process will
have its own data storage and its own copy of registers to hold the data for its own execution
of the shared program.

Example 3.4

Consider a system having page size=30 MB. There are 3 users executing an editor program
which is 90 MB (3 pages) in size, with a 30 MB (1 page) data space.

To support these 3 users, the OS must allocate 3 * (90+30) = 360 MB space. However, if the
editor program is reentrant (non-self-modifying code = read only), then it can be shared
among the users, and only one copy of the editor program is sufficient. Therefore, only 90 +
30 * 3 = 180 MB of memory space is enough for this case.

EE442 Operating Systems Ch. 3 Memory Management

Lecture Notes by Uğur Halıcı 26

 User-1 PT-1 Physical

P0 e1 Page# Frame# Memory
P1 e2 0 8 f0
P2 e3 1 4 f1
P3 data1 2 5 f2

 3 7 f3
 f4 e2
 User-2 PT-2 f5 e3

P0 e1 Page# Frame# f6
P1 e2 0 8 f7 data1
P2 e3 1 4 f8 e1
P3 data2 2 5 f9

 3 12 f10 data3
 f11
 User-3 PT-3 f12 data 2

P0 e1 Page# Frame# f13
P1 e2 0 8 f14
P2 e3 1 4 f15
P3 data3 2 5

 3 10

3.2 Segmentation

In segmentation, programs are divided into variable size segments, instead of fixed size
pages. Every logical address is formed of a segment name and an offset within that
segment. In practice, segments are numbered. Programs are segmented automatically by
the compiler or assembler.

For example, a C compiler will create separate segments for:

1. the code of each function
2. the local variables for each function
3. the global variables.

Main

Func 1 Func 2

Data 1

Data 3

Data 1

EE442 Operating Systems Ch. 3 Memory Management

Lecture Notes by Uğur Halıcı 27

For logical to physical address mapping, a segment table is used. When a logical address
<s, d> is generated by the processor:

1. Base and limit values corresponding to segment s are determined using the
segment table

2. The OS checks whether d is in the limit. (0 ≤ d < limit)
3. If so, then the physical address is calculated as (base + d), and the memory is

accessed.

logical address

Example 3.5

Generate the memory map according to the given segment table. Assume the generated
logical address is <1,123>; find the corresponding physical address.

Segment tables are also implemented in the main memory or in associative registers, in the
same way it is done for page tables.

Seg. # Limit base Attr.

Segment Limit Base
0 1500 1000
1 200 5500
2 700 6000
3 2000 3500

physical
memory

 0

s0
1000

 2500

s3
3500

s1 5500
 5700

s2 6000
 6700

Segment S

s d

ERROR

acess the
word at
physical
address =
base + d NO

YES

d

base

0 ≤ d < limit

Now, check segment table entry for segment 1.
The limit for segment 1 is 200. Since 123 < 200,
we carry on. The physical address is calculated as
5500 + 123 = 5623, and the memory word 5623 is
accessed.

EE442 Operating Systems Ch. 3 Memory Management

Lecture Notes by Uğur Halıcı 28

Sharing Segments

Also sharing of segments is applicable as in paging. Shared segments should be read only
and should be assigned the same segment number.

Example 3.6:

Consider a system in which 3 users executing an editor program which is 1500 KB in size,
each having their own data space.

ST-1
seg lim base
0 1500 1000
1 2000 3500

ST-2
seg lim base
0 1500 100
1 200 5500

physical
memory

 0

editor
1000

 2500

data-1
3500

data-2 5500
 5700

data-3 6000
 6700

ST-3
seg lim base
0 1500 100
1 700 6000

editor

data-1

user-1

editor

data-2

user-2

editor

data-3

user-3

EE442 Operating Systems Ch. 3 Memory Management

Lecture Notes by Uğur Halıcı 29

3.3. Paged segmentation

The idea is to page the segments and eliminate the external fragmentation problem. In
paged segmentation the logical address is made of <s,p,d> triplet. The ST entry for segment
S now, contains:

• the length of segment S
• the base address of the PT for segment S.

There is a separate PT for every segment. On the average, now there is half a page of
internal fragmentation per segment. However, more table space is needed. In the worst
case, again three memory accesses are needed for each memory reference.

The flowchart for accessing a word with logical address <s,p,d> is shown below.

QUESTIONS

1. Why do we need memory management and CPU scheduling algorithms for a multiuser
system ? Can we do without these algorithms? Explain briefly.

2. a. Explain the terms: internal fragmentation and external fragmentation.

b. List the memory management methods discussed, and indicate the types of fragmentation
caused by each method.

PT for
segment S

ERROR

NO

0 ≤ pd ≤ limit s pd

+
STBR

limit base

p d

+

f
d

f

f d

ST

STBR: Segment Table Base Register

EE442 Operating Systems Ch. 3 Memory Management

Lecture Notes by Uğur Halıcı 30

3. Consider a multiuser computer system which uses paging. The system has four
associative registers. the content of these registers and page table for user_12 are given
below:

Page table for user_12 associative registers
0 9 user # page # frame #
1 6 12 3 7
2 15 5 2 18
3 7 12 4 42
4 42 9 0 10

PTLR[12]:5 PTBR[12]:50000
PAGE SIZE :1024 words

For the following logical addresses generated by user_12's program, calculate the physical
addresses, explain how those physical addresses are found, and state the number of
physical memory accesses needed to find the corresponding word in memory. If a given
logical address is invalid, explain the reason.

i. <2,1256> ii. <3,290>
iii. <4,572> iv. <5,290>
v. <0,14>

4. The following memory map is given for a computer system with variable partitioning
memory management.

0 Job Requested memory
 J1 (50K)
 1) J4 arrives 10K
 free (45K) 2) J5 arrives 20K
 3) J6 arrives 15K
 J2 (40K) 4) J7 arrives 20K
 free (10K) 5) J3 leaves
 J3 (20K) 6) J8 arrives 50K

 free (30K)

Find and draw the resulting memory maps, after each step of the above job sequence is
processed, for :

a. first-fit b. best-fit c. worst-fit

5. Consider a computer system which uses paging. Assume that the system also has
associative registers.

a. Explain how logical addresses are translated to physical addresses.

EE442 Operating Systems Ch. 3 Memory Management

Lecture Notes by Uğur Halıcı 31

b. Calculate the effective memory access time given:

 assoc. register access time = 50 nanosec.
 memory access time = 250 nanosec.
 hit ratio = 80%

c. With the above associative register and memory access times, calculate the minimum hit
ratio to give an effective memory access time less than 320 nanoseconds.

6. A system which utilizes segmentation gives you the ability to share segments. If the
segment numbers are fixed, then a shared segment table is needed, and the ST must be
modified. We shall assume that the system is capable of dynamic relocation, but to reduce
the overhead, we want to avoid it unless it is absolutely necessary. The following example is
given for such a system :

ST-6 ST-9
s# base size shares s# base size shares
0 - - 256 0 190 100 -
1 0 100 - 1 - - 256
2 100 90 - 2 290 10 -
3 600 15 -

SST
s# base size no. of sh.

256 400 200 2

Assume maximum number of segments per process is 256, and segments are numbered
starting with 0.

a. What would be done when a segment previously unshared, becomes a shared segment?

b. When do we need dynamic relocation in this system?

c. Assume segment-2 of process 6 is being executed. A reference is made to segment-0 of
process 6. How is the corresponding physical address going to be found?

d. How would self-references within shared segments be handled?

e. What is the no. of sharers field in SST used for?

7. In the X-2700 computer, logical addresses are 24 bits long. The machine implements
paged segmentation with a maximum segment size of 64K words and 4K-word pages:

a. Show the logical address structure indicating the segment, page and displacement bits.

b. How many segments can a user process contain?

c. If a process has to be fully loaded into memory to execute, what is the minimum physical
memory capacity?

d. If the memory unit contains 65536 frames, show the physical address structure.

EE442 Operating Systems Ch. 3 Memory Management

Lecture Notes by Uğur Halıcı 32

e. Show the functional block structure of a suitable architecture for implementing paged
segmentation in the X-2700. Indicate the sizes of all necessary tables.

8. Given the memory map in the figure, where areas not shaded indicate free regions,
assume that the following events occur:

a. Draw the memory maps after step (iv) and (vi) using first fit, best-fit and worst-fit allocation
techniques, without compaction

b. Draw the same memory maps as in part (a) if compaction is performed whenever
required. Also show the maps after each compaction.

9. In a paging system , the logical address is formed of 20 bits. the most significant 8 bits
denote the page number, the least significant 12 bits denote the offset. Memory size is 256K
bits.

a. What is the page size (in bits)?

b. What is the maximum number of pages per process?

c. How many frames does this system have?

d. Give the structure of the page table of a process executing in this system. Assume 2 bits
are reserved for attributes.

e. How many bits are required for each page table entry?

f. If physical memory is upgraded to 1024 K bits, how will your answer to c and e change?

10. Consider a segmentation system with the following data given:

STBR=1000
STLR=5
Associative Registers access time = 50 nsec
Memory Access time = 500 nsec

P1

<free> 30 K

P2

<free> 20 K

P3

<free> 50 K

P4

Step event required contiguous
 memory size (K)

i) process 5 arrives 16
ii) process 6 arrives 40
iii) process 7 arrives 20
iv) process 8 arrives 14
v) process 5 leaves -
vi) process 9 arrives 30

EE442 Operating Systems Ch. 3 Memory Management

Lecture Notes by Uğur Halıcı 33

ST AR
s# base limit s# base limit
0 10000 1000 0 10000 1000
1 12000 2000 1 12000 2000
2 25000 4000
3 15000 8000
4 38000 4000

Assume data can be written into associative registers in parallel with a memory read or write
operation. For replacement of data in associative registers, LRU policy is used.

For each of the following logical addresses, find the corresponding physical address to be
accessed, and the total execution time required for that access, including the time spent for
address translation operations. Also indicate which memory locations are accessed during
address translation. Clearly show all changes made in associative registers.

a. <0,150> b. <0,3700> c. <2,900>
d. <2,3780> e. <5,200> f. <1,200>

11.

12. The following memory map is given for a computer system with variable partitioning
memory management.

P1

<free> 9K

P2

<free> 20 K

P3

<free> 14 K

P4

Consider the memory map given in the figure. If worst fit
policy is to be applied, then what will be the memory map
after arrival of the processes

 P5=3K, P6=5K, P7=7K P8=6K.

Indicate if compaction is needed.

P1 9K

<free> 20 K

P2 11K

<free> 10 K

P3 18K

<free> 30 K

 event required contiguous memory size (K)
i) P4 arrives 16
ii) P5 arrives 40
iii) P6 arrives 20
iv) P7 arrives 14

Find and draw the resulting memory maps after the above job
sequence is processed completely for

a. first fit b. best fit c. worst fit

indicating whenever a compaction is needed.

