
EE442 Operating Systems Ch. 2 Process Scheduling

Lecture Notes by Uğur Halıcı 5

Chapter 2
Processor Scheduling

2.1 Processes

A process is an executing program, including the current values of the program counter,
registers, and variables.The subtle difference between a process and a program is that the
program is a group of instructions whereas the process is the activity.

In multiprogramming systems, processes are performed in a pseudoparallelism as if each
process has its own processor. In fact, there is only one processor but it switches back and
forth from process to process.

Henceforth, by saying execution of a process, we mean the processor’s operations on the
process like changing its variables, etc. and I/O work means the interaction of the process
with the I/O operations like reading something or writing to somewhere. They may also be
named as “processor (CPU) burst” and “I/O burst” respectively. According to these
definitions, we classify programs as

• Processor-bound program: A program having long processor bursts (execution
instants).

• I/O-bound program: A program having short processor bursts.

Assume we have two processes A and B. Both execute for 1 second and do some I/O work
for 1 second. This pattern is repeated 3 times for process A and 2 times for process B.

.
If we have no multiprogramming, the processes are executed sequentially as below.

 Time

ExecA1 I/OA1 ExecA2 I/OA2 ExecA3 I/OA3 ExecB1 I/OB1 ExecB2 I/OB2

So, the processor executes these two processes in a total time of 10 seconds. However, it is
idle at I/O instants of processes. So, it is idle for 5 seconds and utilized for 5 seconds.

Then the processor utilization is %50100
10
5

=×

Now let’s consider multiprogramming case:

CPU A1 B1 A2 B2 A3 Idle

I/0 idle A1 B1 A2 B2 A3

 A enters

A leaves B leaves

B enters

 A enters B enters A leaves B leaves

EE442 Operating Systems Ch. 2 Process Scheduling

Lecture Notes by Uğur Halıcı 6

In this case, when process A passes to some I/O work (i.e. does not use the processor),
processor utilizes its time to execute process B instead of being idle.

Here the processor utilization is %83100
6
5

≅×

2.2 Process States

Start : The process has just arrived.
Ready : The process is waiting to grab the processor.
Running : The process has been allocated by the processor.
Waiting : The process is doing I/O work or blocked.
Halted : The process has finished and is about to leave the system.

In the OS, each process is represented by its PCB (Process Control Block). The PCB,
generally contains the following information:

• Process State,
• Process ID,
• Program Counter (PC) value,
• Register values
• Memory Management Information (page tables, base/bound registers etc.)
• Processor Scheduling Information (priority, last processor burst time etc.)
• I/O Status Info (outstanding I/O requests, I/O devices held, etc.)
• List of Open Files
• Accounting Info.

If we have a single processor in our system, there is only one running process at a time.
Other ready processes wait for the processor. The system keeps these ready processes
(their PCBs) on a list called Ready Queue which is generally implemented as a linked-list
structure.

When a process is allocated by the processor, it executes and after some time it either
finishes or passes to waiting state (for I/O). The list of processes waiting for a particular I/O
device is called a Device Queue. Each device has its own device queue.

In multiprogramming systems, the processor can be switched from one process to another.
Note that when an interrupt occurs, PC and register contents for the running process (which
is being interrupted) must be saved so that the process can be continued correctly
afterwards.Switching between processes occurs as depicted below.

START

WAITING

READY RUNNING HALTED

 I/O
requested

I/O
completed

EE442 Operating Systems Ch. 2 Process Scheduling

Lecture Notes by Uğur Halıcı 7

2.3 Scheduler

If we consider batch systems, there will often be more processes submitted than the number
of processes that can be executed immediately. So incoming processes are spooled (to a
disk). The long-term scheduler selects processes from this process pool and loads selected
processes into memory for execution.

The short-term scheduler selects the process to get the processor from among the
processes which are already in memory.

The short-time scheduler will be executing frequently (mostly at least once every 10
milliseconds). So it has to be very fast in order to achieve a better processor utilization. The
short-time scheduler, like all other OS programs, has to execute on the processor. If it takes
1 millisecond to choose a process that means (1 / (10 + 1)) = 9% of the processor time is
being used for short time scheduling and only 91% may be used by processes for execution.

The long-term scheduler on the other hand executes much less frequently. It controls the
degree of multiprogramming (no. of processes in memory at a time). If the degree of
multiprogramming is to be kept stable (say 10 processes at a time), then the long-term
scheduler may only need to be invoked when a process finishes execution.

The long-term scheduler must select a good process mix of I/O-bound and processor bound
processes. If most of the processes selected are I/O-bound, then the ready queue will
almost be empty while the device queue(s) will be very crowded. If most of the processes
are processor-bound, then the device queue(s) will almost be empty while the ready queue
is very crowded and that will cause the short-term scheduler to be invoked very frequently.

Time-sharing systems (mostly) have no long-term scheduler. The stability of these systems
either depends upon a physical limitation (no. of available terminals) or the self-adjusting
nature of users (if you can't get response, you quit).

It can sometimes be good to reduce the degree of multiprogramming by removing processes
from memory and storing them on disk. These processes can then be reintroduced into
memory by the medium-term scheduler. This operation is also known as swapping.
Swapping may be necessary to improve the process mix or to free memory.

2.4. Performance Criteria

In order to achieve an efficient processor management, OS tries to select the most
appropriate process from the ready queue. For selection, the relative importance of the
followings may be considered as performance criteria.

Execution of A

Save PCA
Save REGISTERS A
Load PCB
Load REGISTERS B Execution of B

Execution of A

Save PCB
Save REGISTERS B
Load PCA
Load REGISTERS A
(Context Switching)

EE442 Operating Systems Ch. 2 Process Scheduling

Lecture Notes by Uğur Halıcı 8

Processor Utilization: The ratio of busy time of the processor to the total time passes for
processes to finish. We would like to keep the processor as busy as possible.

Processor Utilization = (Processor buy time) / (Processor busy time + Processor idle time)

Throughput: The measure of work done in a unit time interval.

Throughput = (Number of processes completed) / (Time Unit)

Turnaround Time (tat): The sum of time spent waiting to get into the ready queue,
execution time and I/O time.

tat = t(process completed) – t(process submitted)

Waiting Time (wt): Time spent in ready queue. Processor scheduling algorithms only affect
the time spent waiting in the ready queue. So, considering only waiting time instead of
turnaround time is generally sufficient.

Response Time (rt): The amount of time it takes to start responding to a request. This
criterion is important for interactive systems.

rt = t(first response) – t(submission of request)

We, normally, want to maximize the processor utilization and throughput, and minimize tat,
wt, and rt. However, sometimes other combinations may be required depending on to
processes.

2.5 Processor Scheduling algorithms

Now, let’s discuss some processor scheduling algorithms again stating that the goal is to
select the most appropriate process in the ready queue. For the sake of simplicity, we will
assume that we have a single I/O server and a single device queue, and we will assume our
device queue always implemented with FIFO method. We will also neglect the switching
time between processors (context switching).

2.3.1 First-Come-First-Served (FCFS)

In this algorithm, the process to be selected is the process which requests the processor
first. This is the process whose PCB is at the head of the ready queue. Contrary to its
simplicity, its performance may often be poor compared to other algorithms.

FCFS may cause processes with short processor bursts to wait for a long time. If one
process with a long processor burst gets the processor, all the others will wait for it to
release it and the ready queue will be filled very much. This is called the convoy effect.

Example 2.1

Consider the following information and draw the timing (Gannt) chart for the processor and
the I/O server using FCFS algorithm for processor scheduling.

EE442 Operating Systems Ch. 2 Process Scheduling

Lecture Notes by Uğur Halıcı 9

Process Arrival time 1st exec 1st I/O 2nd exec 2nd I/O 3rd exec
A 0 4 4 4 4 4
B 2 8 1 8 - -
C 3 2 1 2 - -
D 7 1 1 1 1 1

A B C D B C A D

CPU A1 B1 C1 D1 A2 B2 C2 D2 A3 D3

0 2 3 4 7 12 14 15 19 27 29 30 34 35

I/O A1 B1 C1D1 A2 D2
0 4 8 12 13 14 15 16 19 23 30 31

Processor utilization = (35 / 35) * 100 = 100 %

Throughput = 4 / 35=0.11

tatA = 34 – 0 = 34
tatB = 27 – 2 = 25
tatC = 29 – 3 = 26
tatD = 35 – 7 = 28

tatAVG = (34 + 25 + 26 + 28) / 4 = 28.25

wtA = (0 – 0) + (15 – 8) + (30 – 23) = 14
wtB = (4 – 2) + (19 – 13) = 12
wtC = (12 – 3) + (27 – 15) = 21
wtD = (14 – 7) + (29 – 16) + (34 – 31) = 23

wtAVG = (14 + 12 + 21 + 23) / 4 = 17.3

rtA = 0 – 0 = 0
rtB = 4 – 2 = 2
rtC = 12 – 3 = 9
rtD = 14 – 7 = 7

rtAVG = (0 + 2 + 9 + 7) / 4 = 4.5

2.3.2 Shortest-Process-First (SPF)

In this method, the processor is assigned to the process with the smallest execution
(processor burst) time. This requires the knowledge of execution time. In our examples, it is
given as a table but actually these burst times are not known by the OS. So it makes
prediction. One approach for this prediction is using the previous processor burst times for
the processes in the ready queue and then the algorithm selects the shortest predicted next
processor burst time.

EE442 Operating Systems Ch. 2 Process Scheduling

Lecture Notes by Uğur Halıcı 10

Example 2.2 :

Consider the same process table in Example 2.1 and draw the timing charts of the processor
and I/O assuming SPF is used for processor scheduling. (Assume FCFS for I/0)

A B C D C D B A

CPU A1 C1 B1 D1 C2 D2 A2 D3 B2 A3

0 2 3 4 6 14 15 17 18 22 23 31 35

I/O A1 C1 B1D1 D2 A2
0 4 8 9 14 15 16 18 19 22 26 35

Processor utilization = (35 / 35) * 100 = 100 %

Throughput = 4 / 35 = 0.11

tatA = 35 – 0 = 35
tatB = 31 – 2 = 29
tatC = 17 – 3 =14
tatD = 23 – 7 = 16

tatAVG = (35 + 29 + 15 + 16) / 4 = 23.5

wtA = (0 – 0) + (18 – 8) + (31 – 26) = 15
wtB = (6 – 2) + (23 – 15) = 12
wtC = (4 – 3) + (15 – 9) = 7
wtD = (14 – 7) + (17 – 16) + (22 – 19) = 11

wtAVG = (15 + 12 + 7 + 11) / 4 = 11.25

rtA = 0 – 0 = 0
rtB = 6 – 2 = 4
rtC = 4 – 3 = 1
rtD = 14 – 7 = 7

rtAVG = (0 + 4 + 1 + 7) / 4 = 3

2.3.3 Shortest-Remaining-Time-First (SRTF)

The scheduling algorithms we discussed so far are all non-preemptive algorithms. That is,
once a process grabs the processor, it keeps the processor until it terminates or it requests
I/O.

To deal with this problem (if so), preemptive algorithms are developed. In this type of
algorithms, at some time instant, the process being executed may be preempted to execute
a new selected process. The preemption conditions are up to the algorithm design.

SPF algorithm can be modified to be preemptive. Assume while one process is executing on
the processor, another process arrives. The new process may have a predicted next
processor burst time shorter than what is left of the currently executing process. If the SPF
algorithm is preemptive, the currently executing process will be preempted from the

EE442 Operating Systems Ch. 2 Process Scheduling

Lecture Notes by Uğur Halıcı 11

processor and the new process will start executing. The modified SPF algorithm is named as
Shortest-Remaining-Time-First (SRTF) algorithm.

Example 2.3

Consider the same process table in Example 2.1 and draw the timing charts of the processor
and I/O assuming SRTF is used for processor scheduling.

A B C D C D A B

CPU A1 C1 B1 D1 A2 C2 D2A2D3 A2 B1 A3 B2

0 2 3 4 6 7 8 9 11 12 13 14 16 23 27 35

I/O A1 C1 D1 D2 A2 B1
0 4 8 9 10 12 13 16 20 23 24 35

Processor utilization = (35 / 35) * 100 = 100 %

Throughput = 4 / 35 = 0.11

tatA = 27 – 0 = 27
tatB = 35 – 2 = 33
tatC = 11 – 3 = 8
tatD = 14 – 7 = 7

tatAVG = (27 + 33 + 8 + 7) / 4 = 18.75

wtA = (0 – 0) + (8 – 8) + (12 - 9) + (14 – 13) + (23 - 20) = 7
wtB = (6 – 2) + (16 – 7) + (27-24) = 16
wtC = (4 – 3) + (9 – 9) = 1
wtD = (7 – 7) + (11 – 10) + (13 – 13) = 1

wtAVG = (7 + 16 + 1 + 1) / 4 = 6.25

rtA = 0 – 0 = 0
rtB = 6 – 2 = 4
rtC = 4 – 3 = 1
rtD = 7 – 7 = 0

rtAVG = (0 + 4 + 1 + 0) / 4 = 1.25

2.3.4 Round-Robin Scheduling (RRS)

In RRS algorithm the ready queue is treated as a FIFO circular queue. The RRS traces the
ready queue allocating the processor to each process for a time interval which is smaller
than or equal to a predefined time called time quantum (slice).

The OS using RRS, takes the first process from the ready queue, sets a timer to interrupt
after one time quantum and gives the processor to that process. If the process has a
processor burst time smaller than the time quantum, then it releases the processor

EE442 Operating Systems Ch. 2 Process Scheduling

Lecture Notes by Uğur Halıcı 12

voluntarily, either by terminating or by issuing an I/O request. The OS then proceed with the
next process in the ready queue.

On the other hand, if the process has a processor burst time greater than the time quantum,
then the timer will go off after one time quantum expires, and it interrupts (preempts) the
current process and puts its PCB to the end of the ready queue.

The performance of RRS depends heavily on the selected time quantum.

• Time quantum ∞ ⇒ RRS becomes FCFS

• Time quantum 0 ⇒ RRS becomes processor sharing (It acts as if each of the n

processes has its own processor running at processor speed divided by n)

For an optimum time quantum, it can be selected to be greater than 80 % of processor
bursts and to be greater than the context switching time.

Example 2.4

Consider the following information and draw the timing chart for the processor and the I/O
server using RRS algorithm with time quantum of 3 for processor scheduling.

A B C D C D B A

CPU A1 B1 C1 A1 B1 D1C2 B1 A2 D2B2 A2D3B2 A3 B2 A3

0 3 6 8 9 12 13 15 17 20 21 24 25 26 29 32 34 35

I/O C1 A1 D1 B1 D2 A2
0 8 9 13 14 17 18 21 22 25 29 35

Processor utilization = (35 / 35) * 100 = 100 %

Throughput = 4 / 35

tatA = 35 – 0 = 35
tatB = 34 – 2 = 32
tatC = 15 – 3 =12
tatD = 26 – 7 = 19

tatAVG = (35 + 32 + 12 + 19) / 4 = 24.5

wtA = (0 – 0) + (8 – 3) + (17 - 13) + (24 – 20) + (29 - 29) + (34 – 32) = 15
wtB = (3 – 2) + (9 – 6) + (15 -12) + (21 – 18) + (26 – 24) + (32 – 29) = 15
wtC = (6 – 3) + (13 – 9) = 7
wtD = (12 – 7) + (20 – 14) + (25 – 22) = 14

wtAVG = (15 + 12 + 7 + 11) / 4 = 11.25

rtA = 0 – 0 = 0
rtB = 36 – 2 = 1
rtC = 6 – 3 = 3
rtD = 12 – 7 = 5

rtAVG = (0 + 1 + 3 + 5) / 4 = 2.25

EE442 Operating Systems Ch. 2 Process Scheduling

Lecture Notes by Uğur Halıcı 13

 FCFS SPF SRT RR
tatavg 28.25 23.5 18.75 24.5
wtavg 16.5 10.5 6.25 12.25
rtavg 4.5 3 1.25 2.25
 Easy to implement Not possible to

know next CPU
burst exactly, it can
only be guessed

Not possible to
know next CPU
burst exactly, it can
only be guessed

Implementable, rtmax
is important for
interactive systems

2.3.5 Priority Scheduling

In this type of algorithms a priority is associated with each process and the processor is
given to the process with the highest priority. Equal priority processes are scheduled with
FCFS method.

To illustrate, SPF is a special case of priority scheduling algorithm where

Priority(i) = 1 / next processor burst time of process i

Priorities can be fixed externally or they may be calculated by the OS from time to time.
Externally, if all users have to code time limits and maximum memory for their programs,
priorities are known before execution. Internally, a next processor burst time prediction such
as that of SPF can be used to determine priorities dynamically.

A priority scheduling algorithm can leave some low-priority processes in the ready queue
indefinitely. If the system is heavily loaded, it is a great probability that there is a higher-
priority process to grab the processor. This is called the starvation problem. One solution for
the starvation problem might be to gradually increase the priority of processes that stay in
the system for a long time.

Example 2.5

Following may be used as a priority defining function:
Priority (n) = 10 + tnow – ts(n) – tr(n) – cpu(n)
where
 ts(n) : the time process n is submitted to the system

tr(n) : the time process n entered to the ready queue last time
cpu(n) : next processor burst length of process n
tnow : current time

QUESTIONS

1. Construct an example to compare the Shortest Job First strategy of processor scheduling
with a Longest Job First strategy, in terms of processor utilization, turnaround time and
throughput.

2. The following jobs are in the given order in the ready queue:

EE442 Operating Systems Ch. 2 Process Scheduling

Lecture Notes by Uğur Halıcı 14

Job CPU Burst(msec) Priority
A 6 3
B 1 1
C 2 3
D 1 4
E 3 2

None of these jobs have any I/O requirement.

a. what is the turnaround time of each job with First come First Served, Shortest Job First,

Round Robin (time quantum=1) and non-preemptive priority scheduling? Assume that the
operating system has a context switching overhead of 1 msec. for saving and another 1
msec. for loading the registers of a process.

b. what is the waiting time for each job with each of the four scheduling techniques and

assumption as in part a?

3. The following data is given for a computer system employing Round-Robin processor
Scheduling with time slice=5, if two processes are to enter to the ready queue at the same
time then they will enter in the alphabetical order of their names:

process arrival CPU I/0 CPU

A 0 4 5 6
B 3 3 - -
C 10 2 7 7

a. Assuming that context switch time is 0, draw the Gannt Chart for the above processes,
and calculate the average waiting time and CPU utilization.

b. Assuming context switch time is 1, repeat part 'a',

c. Discuss briefly how the time slice should be selected to increase the system performance,
given average CPU burst time, average I/O time, and the context switch time.

4. Consider the following job arrival and CPU burst times given:

Job Arrival time CPU burst
A 0 7
B 2 4
C 3 1
D 6 6

a. Using the shortest job first scheduling method, draw the Gannt chart (showing the order of
execution of these jobs), and calculate the average waiting time for this set of jobs.

b. Repeat a. using the shortest remaining time first scheduling method.

c. What is the main difference between these two methods ?

5. Explain the following briefly:

a. What is an I/O bound job?

EE442 Operating Systems Ch. 2 Process Scheduling

Lecture Notes by Uğur Halıcı 15

b. What is CPU bound job?

c. Suppose there is one I/O bound job and one CPU bound job in a ready queue. Which one
should get the processor in order to achieve a better CPU

d. Repeat c. for a better I/O device utilization.

6. A processor scheduling algorithm determines an order of execution of active processes in
a computer system.

a. If there are n processes to be scheduled on one processor, how many possible different
schedules are there? Give a formula in terms of n.

b. Repeat part a. for n processes to be scheduled on m processors.

7. Explain the following terms :

a. Long-term scheduler

b. Short-term scheduler

Which one controls the degree of multiprogramming?

8. a. Find and draw the Gannt Chart for the following processes assuming a preemptive
shortest remaining time first processor scheduling algorithm.

process arrival next CPU

A 0 12
B 2 9
C 5 2
D 5 7
E 9 3
F 10 1

Clearly indicate every preemption on your Gannt Chart.

b. Calculate the turnaround times for each process, and find the average turnaround time for
the above processes.

9. Consider a priority_based processor scheduling algorithm in which priorities are computed
as the ratio of processor execution time to real time (total elapsed time).

a. Does this algorithm give higher priority to processor bound processes, or to I/O bound
processes? Explain.

b. If priorities are recomputed every second, and if there is no I/O, to which algorithm does
this processor scheduling algorithm degenerate to?

10. Show the execution of the following processes on Gannt Charts for the processor and
the I/O device if Shortest Process First Algorithm for the Processor is used. Assume that
the processes in the I/O queues are processes in First Come First Served manner . Find
also the average waiting time in ready queue.

EE442 Operating Systems Ch. 2 Process Scheduling

Lecture Notes by Uğur Halıcı 16

 CPU and I/0 Bursts

Arrival Process 1st CPU 1st I/O 2nd CPU 2nd I/O 3rd CPU
0 A 4 4 4 4 4
2 B 6 2 6 2 -
3 C 2 1 2 1 -
7 D 1 1 1 1 1

11. Show the execution of the following processes on Gannt Charts for the processor and
the I/O device if Shortest Remaining Time First Algorithm for the Processor is used. Find
also the average waiting time in ready queue. If the processess are to enter to the ready
queue at the same time due to a. preemption of the processor, b. new submission, or c.
completion of I/O operation, then the process of case a., will be in front of the process of
case b., which will be in front of the process of case c.. Assume that I/O queue works in
First Come First Served manner.

 CPU and I/0 Bursts

Arrival Process 1st CPU 1st I/O 2nd CPU 2nd I/O 3rd CPU
0 A 4 4 4 4 4
2 B 8 1 8 1 -
3 C 1 1 1 1 -

12.Consider a priority based processor scheduling algorithm such that whenever there is a
process in the ready queue having priority higher priority than the one executing in CPU, it
will force the executing process to prempt the CPU, and itself will grab the CPU. If there are
more then one such processes having highests priority, then among these the one that
entered into the ready queue first should be chosen. Assume that all the processes have a
single CPU burst and have no I/O operation and consider the following table:

Process id Submit (i) msec Burst(i) msec

P1 0 8
P2 2 4
P3 3 2

where Submit(i) denotes when process Pi is submitted into the system (assume they are
submitted just before the tic of the clock) and Burst(i) denotes the length of the CPU burst
for process Pi . Let let Tnow to denote the present time and Execute(i) to denote the total
execution of process Pi in cpu until Tnow. Assuming that the priorities are calculated every
msec (just after the tic of the clock), draw the corresponding Gannt charts for the following
priority formulas, which are valid when the process has been submitted but not terminated
yet,

a. Priority(i)= Tnow-Submit(i)

b. Priority(i)= Burst(i)-Execute(i)

c. Priority(i)=(Burst(i)-Execute(i))-1

13. Consider the following job arrival and CPU, I/O burst times given. Assume that context
switching time is negligible in the system and there is a single I/O device, which operates in
first come first served manner,

EE442 Operating Systems Ch. 2 Process Scheduling

Lecture Notes by Uğur Halıcı 17

process arrival t. CPU-1 I/O-1 CPU-2
A 0 2 4 4
B 1 1 5 2
C 8 2 1 3

Draw the Gannt charts both for the CPU and the I/O device., and then find out what is the
average turn around time and cpu utilization for

a. first come first served

b. round robin

processor scheduling algorihms.

14. Consider the following job arrival:

process arrival time next CPU burst

A 0 7
B 1 5
C 2 3
D 5 1

a. Draw the Gannt chart for the CPU if nonpreemptive SPF scheduling is used
b. Repeat part a. if preemptive SPF scheduling is used
c. Repeat part a. if nonpreemptive priority based CPU scheduling is used with

 priority (i)= 10 + tnow - tr(i) – cpu(i)

 where ts(i)=the time process i is submitted to the sytem,
 tr(i)= the time proceess i entered to the ready queue last time,
 cpu(i)=next cpu burst length of process i,
 tnow=current time.

The process having the highest priority will grab the CPU. In the case more than one
processes having the same priority, then the one being the first in the alphabetical order will
be chosen.

d. For each of above cases indicate if starvation may occur or not

