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Capacity of Zero-Outage Scheme
Under Imprecise Channel State Information

Cagatay Candan

Abstract—The capacity of zero-outage scheme with imprecise
channel state information at the transmitter side (CSIT) for
frequency flat, single-input multiple-output (SIMO) channels is
examined. It is shown that when CSIT is not precise, the receiver
signal-to-noise-ratio fluctuates and the scheme suffers from com-
munication outages. Exact analytical expressions characterizing
the outage capacity, the additional power required to compensate
the effect of noisy CSIT are given and the impact of noisy CSIT
on the ergodic capacity is examined.

Index Terms—Zero-outage scheme, outage capacity, ergodic
capacity, imprecise CSI.

I. INTRODUCTION

T is well known that the presence of precise channel

state information at the transmitter side (CSIT) enables the
system designer to convert a fading channel to a non-fading
channel with a procedure called channel inversion, [1, p.111].
The conversion to the non-fading condition is achieved by
adjusting the instantaneous transmit power so as to compensate
the channel conditions such that the receiver signal-to-noise-
ratio (SNR) is constant for all fading states under a long term
average transmit power constraint. Even though this scheme is
not optimal in the sense of maximizing the channel capacity,
its relative simplicity and the availability of capacity achieving
codes for additive white noise channels makes this scheme
attractive. The capacity of the described scheme is denoted as
the zero-outage capacity in the literature, [1], [2], [3], [4].

In this letter, we examine the effect of impresice CSIT on
the zero-outage capacity. It should be clear that the imperfec-
tions in CSIT prohibit the transmitter to exactly compensate
the channel state and achieve a constant SNR at the receiving
end. This letter examines the SNR fluctuation at the receiver
due to noisy CSIT and its effect on the capacity. The SNR
fluctuation can also be interpreted as a type of fading due to
imperfect knowledge of the channel state. In the present work,
we examine the zero-outage capacity for single user, flat fading
single-input multiple-output (SIMO) Rayleigh channels. The
capacity with perfect CSIT for independent Rayleigh fading
channels with D receivers (D is also the diversity level) is
given as log, (1 + % 1;“2”) bits/sec/Hz [3, eq. (3.3.30)]. Our
goal is to characterize the capacity of the same system under
noisy CSIT.

It should be remarked that the phrase “zero-outage” does not
describe the operation of the scheme under imprecise CSIT.
Yet, we use “zero-outage capacity with imprecise CSIT” and
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similar phrases in order to position the present study within the
related works in the literature. Related works in the literature
are the initial work of Caire et al. [2] on the delay limited
capacity for the block fading channels and its extension to
multiple antenna systems by Biglieri et al. [5]. Sung et al.
examines the delay limited capacity of MIMO-OFDM systems
[6] and an extension to multi-user communication is given
in [7]. To the best of our knowledge, the effect of channel
estimation errors on the capacity of zero-outage scheme, that
is the maximization of the mutual information given noisy
CSI at transmitter, is not studied in the literature in spite of
its mention by Caire et al. in [2].

II. SYSTEM MODEL AND PRELIMINARIES

System model for a flat fading, quasi-static SIMO com-
munication system with D receiving antennas is written as
follows:

yr = vV SNR hpz 4+ ng,

Here hy (k = {1,...,D}) is the complex valued channel
gain which is independent and identically distributed (i.i.d.)
circularly symmetric complex Gaussian random variables with
zero mean and variance 1/D, hy ~ CN(0,1/D); ny, is i.i.d.
receiver noise with the distribution CA/(0, 1); the data symbol
x is assumed to be zero mean and unit variance. The variable
SNR appearing in (1) can be considered as the output SNR
after the maximum ratio combining of D antenna outputs.
In this paper, we assume that the channel gains are estimated
through the transmission of a pilot. The minimum mean square
error (MMSE) estimate of hj; can be written as follows, [8]:

~ v/ SNRt

k= SNRT—FDyk’

Here SNRry refers to the SNR at the training phase which
can be greater than the operation SNR. The random variables
hy and its estimate hj are both Gaussian distributed with the
following joint distribution:

k={1,...,D} ey

k=1{1,...,D} )

D, 0 1/D p/D
]l loln Bm ) @
Here p = SNSIIJTE + and /p is the correlation coefficient of Ay

and hj. The parameter p is denoted as the power correlation
coefficient in the literature.

The channel gains (hy) are independent from each other;
therefore, the random variable ||h||2 = S |hg|? is chi-
square distributed with 2D degrees of freedom. In addition,
E{||h||?} (the power gain) is 1. It should be noted that the
chi-square distribution representing ||h||? is also denoted as
the gamma distribution with the shape parameter D and scale
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parameter 2 = E{||h[|*} = 1. Similar to |[h[?, the random
variable ||h||? is gamma distributed with the same shape
parameter (D), but with a scale parameter of {2 = p.

The joint distribution of the random variables ||h|[? and
|In||? is required for the present analysis. Following the
discussion presented in [9], the correlation coefficient of the
random variables ||h||? and |[h||? can be shown to be p.
The joint probability density function of p; = |[h|* and

D2 = ||h||2 has been given in [10, eq.(5)] and presented in
(4) (on the next page).

I'(-) appearing in (4) is the gamma function, I,(x) =
Yoo o(@/2)2T2k /(T(a + k + 1)k!) is the modified Bessel
function of order o and u(:) is the unit step function. The
probability distribution given in (4) is called as the bivariate
Gamma distribution and represents the joint distribution of
p1 = ||h||? and ps = ||h||? with the common shape parameter
of D and the scale parameters {2y = 1 and Qs = p. As
a cautionary remark, we would like to note that there are
different bivariate Gamma densities generalizing the ordinary
gamma density in the literature, [11, p. 438]. The one given in
(4) is known as the Jensen’s bivariate density in the statistics
literature. This remark concludes required background on the
distribution of channel gains and their estimates for the study
of the zero-outage capacity under noisy CSIT.

III. ZERO-OUTAGE CAPACITY

The capacity for the SIMO communication channel y; =
h;\/P(i)z + n is logy (1 + ||h;|[?P(i)/0?) bits/sec/Hz for a
fixed vector of channel gains h;. Here P(i) is the allocated
transmitter power at time ¢, h; is a D x 1 complex valued
vector formed by concatenating the individual channel gains
and o is the noise variance at the receiver side.

The channel capacity for random channel gains is a random
variable. One way of combating the randomness of the channel
is the allocation of the transmitter power P(i) such that
the receiver SNR, SNR = [|h||2P(i)/o?, is constant for
all channel states. This scheme is called as the zero-outage
scheme in the literature, [1, p.111].

Assuming the availability of precise channel informa-
tion at the transmitter, the instantaneous power is set as
P(i) m in the zero-outa}ge scheme. It
should be noted that the stated power allocation satisfies the
long term transmitter power constraint of E{P(i)} = P,
where P is the available average power at the transmitter.
With the given power allocation, the system model becomes
h, P
|1l
comes W, which is a non-random constant. In
effect, with the zero-outage scheme the SIMO fading channel
is converted to an AWGN channel with the capacity of
log, (1 + WI;H}!HQ}) bits/sec/Hz. Further details of the
scheme is illustrated with several examples in [1].

When CSIT is not precise, the instantaneous power is set
according to the distribution of h (instead of h), P@i) =
’ {P Hh H . Under noisy CSIT conditions, the system

1/

T
model with the given power allocation becomes as follows:

x + n and the receiver SNR be-

o P
yi B/
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a;

It should be noted that a; and b given in (5) is a ran-
dom vector and a non-random scalar, respectively. With this

observation, the capacity of the channel y; = a;bx + n
can be immediately written as, log,(1 + ||a;[|?b?/0?) =
1og2( T V- Here LHI2 P

|2 B/ D202 BIE B/
random variable representing the receiver SNR. We note that
this random variable is related to the ratio of correlated
bivariate gamma variates ||h||> and ||h||2> whose joint density
is given in (4).

The density for the ratlo of correlated gamma variates, r =
p1/p2 where p; = ||h|” and p, = ||h||2 can be written as
follows, [12, eq. (10)]':

f (T)_ZQD_l ['(D+1/2) (1 —p)PAPrP=1(r + X)
Ty (D) [+ M2 = 4par]P 0P

Here A is the ratio of average powers, A\ = Q;/Qy =
1/ P= (SNRt + D)/SNRt. Denoting the random variable
|h|® /|[h||2, whose density is glven in (6), with r and
making use of E{1/||h|| } = the receiver SNR
|hy? P P Do
B B0/IBT e can be. compactly expressed as - D=1,
Then, the channel capacity for a fixed r becomes 1og2(1 +
L D=1 r) bits/sec/Hz. Since the density of 7 is analytically
avallable from (6), the capacity characterization of the zero-
outage scheme under noisy CSIT is completed. In the follow-
ing sections, we present the details on the ergodic and outage

capacity calculations.

u(r) (6)

p(D—l) ’

A. Ergodic Capacity

The ergodic capacity is the mean of the random variable
log,(1 + & 252 pr), E {logy(1 + L > 251 pr)}. By making
use of the relation log(1 + ) ~

1og7( ), the ergodic capacity
can be approximated as E,{log,(ZZ51pr)} at high SNR
conditions, that is

PD-1
Cergodic ~ 10g2 <§ T) + 1Og2 (p) + E{10g2 (T)} (7)

From (7), we can note that the calculation of ergodic ca-
pacity for the presented scheme reduces to the evaluation
E{log,(r)}. For the evaluation of this expected value opera-
tion, the generalized moment function of r, ®,.(s) = E{r®}
for a non-negative real valued s, can be utilized. The function
®,.(s) (s < D) can be expressed as follows, [13, Corollary

1]:
Q S
®,(s) = (Q—;)
g(s)

Here 2 F(+) denotes the generalized hypergeometric function.
By evaluating the first derivative of ®,.(s) at s = 0, we can get

I'(D+ s)['(D —

T(D)T(D) DoRa D) ®

'Equation (6) is the corrected version of [12, eq. (10)] where the factor of
AP is missing.
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Fig. 1. A set of realizations for the zero-outage scheme with D = 3 receiving
antennas under imprecise CSIT conditions.

4, (s)| _, = E-{In(r)}. Noting that ®,(s) = (g_) g(s)
and the evenness of the function ¢(s), the first derivative of
®,.(s) at s = 0 can be easily calculated as In(€2;/92). With
the substitution of ; = 1 and Qy = p, we can finalize
the evaluation of expected value operation, E{log,(r)} =
—log,(p).

Upon the substitution of E{logy(r)} = —logy(p)
into (7), the ergodic capacity under noisy CSIT becomes

log, U—F; % . It should be noted that this is exactly the value
of the ergodic capacity with precise CSIT! This surprising
result can be explained by noting that the loss term in equation
(7), which is log,(p), is perfectly cancelled with the term
E{log,(r)} related to the fluctuation of receiver SNR.

Fig. 1 is presented to examine this surprising result in more
detail. Here 100 capacity realizations are shown for a system
with D = 3 receiving antennas and operating at the SNR
of P/a? = 20 dB. The channel coefficients are estimated at
SNRy = {20,30} dB. The presented analytical result states
that the average of realizations for different SNRt values are
identical which is confirmed by Monte Carlo experiments.

Fig. 1 illustrates that the fluctuation around the mean value,
that is fluctuation around ergodic capacity valve, is much more
significant for lower training SNR values. It is possible to
conclude from this figure that the main cost of poor CSI is
not a reduction in the ergodic capacity; but the fluctuation of
the instantaneous capacity. In the next section, we examine
this fluctuation and its effect on the outage capacity.

B. Outage Capacity

The communication outages occur when the instantaneous
capacity falls below the information rate. For the examined
scheme, the probability of this event is Py (R) = P{log,(1+
|a;||?b?/0?) < R} where R is the information rate and the

Outage Capacity
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Fig. 2. Outage capacity of the described scheme at different SNR, training
SNR and diversity levels.

definitions for a; and b are given in (5). Using the density
2
= @, given in (6), the outage probability

hi2

can be expressed IzlisHPom(R) = F.(c?(2% — 1)/b*) where
F.(z) = foz fr(x)dx is the cumulative distribution function
(c.d.f.) of the random variable r. Equivalently, the maximum
information rate that can carried at an outage probability of

Py 1s

Cou = logy(1 4+ F 1 (Poy)b?/0?)  bits/sec/Hz. ©)

of r = ||a;||?

The cumulative distribution function F,.(r) appearing in the
outage relations is a complicated function to analytically
express for the generic values of D and A. Yet, the same
function can be easily written for a given set of numerical
values. For example, the distribution function F,.(r) for D = 2
and A = 1.2 (corresponds to SNRt = 10 dB) can be expressed
as follows:

()= <1+

(57 — 6)(257% — 30r + 36)
(252 — 407 + 36)3/2

u)) a0

Similar analytical expressions for F.(r) can be derived using
standard integration techniques when numerical values for D
and \ are given.

Fig. 2 shows the outage capacity for the operational SNR
(P/c?) of 20 dB, the training SNR values of {20, 25,30} dB
and D = {2,4}. The capacity of the system with precise CSIT
is also provided as an upper bound for the noisy CSIT cases.
From this figure, we can conclude that when the training SNR
is greater than operational SNR, the capacity degradation due
to imprecise CSIT can be considered acceptable, say, for a 5%
communication outage rate.

In Fig. 3, the amount of additional power required to operate
at the capacity value of the perfect CSIT case is shown. The
additional power can be considered as a penalty paid by the
transmitter for the imprecise CSIT. For the calculation of this
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Additional power required to compensate the effect of imprecise

penalty, note that b* appearing in the outage capacity relation

(9) can be written as b = P =
B{1/|/h|]2}

(5). When b? is substituted intg the outage capacity relation,
we get Coy = log, (1 + WF[%PM);}). It should

P .
B{1/|hyE P USe

be clear that by increasing P by 1/[F1(Poy)p], we can
cancel the term F!(P.y)p appearing in Cyy. Hence, an
additional power of —101log; (F,~ (Pou)p) dB is required to
compensate the effect of noisy CSIT. Fig. 3 shows the required
power for different outage probability values. An important
point that should be emphasized is that both the capacity loss
and the additional power required for its compensation do
not depend on the operational SNR; but only depends on the
“quality” of channel estimates generated by the training.

IV. CONCLUSIONS

This paper examines the capacity degradation of the zero-
outage scheme due to imprecise CSIT. It is analytically shown
that the ergodic capacity of the scheme is not affected by
the imprecise channel state information. The outage capacity
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is indeed significantly affected by the quality of CSIT. The
amount of additional power compensating this degradation is
analytically given. This work can be relatively easily extended
to the frequency selective fading channels by following the
approach given in [6]. A more difficult extension is the
examination of the capacity when both receiver CSI (CSIR)
and transmitter CSI is noisy. The results of this paper can be
considered as an upper bound for this more difficult problem.
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