
Correspondence

A Low Complexity Two-Stage Target Detection
Scheme for Resource Limited Radar Systems

A two-stage detector is proposed to accommodate high

computational load requirements of modern radar systems. The

first stage of the proposed system is a low-complexity detector

that operates at an unusually high false alarm probability value

around 1/10. This stage is to prescreen and eliminate some of

the test cells with relatively few operations. The second stage

operates only on the cells passing the prescreening stage and

implements a high-complexity detector at a desired system false

alarm rate. Due to the detector cascade, the second stage has

a large amount of computational load reduction, on the order

of 10 folds, in comparison with the single-stage systems. The

mathematical analysis of the described two-stage detector is

presented, and the relations for the false alarm and detection

probability are derived. The numerical results show that it is

possible to achieve a significant computational load reduction at

a negligible performance loss with the proper selection of detector

parameters.

I. INTRODUCTION

Surveillance radars continuously scan the

environment and process the stream of incoming data

to decide on the presence or absence of targets in

the region of interest [1, 2]. Modern systems operate

at increasing range and angular resolutions, which

leads to increasing computation load requirements

on the processor. In this correspondence we present

a two-stage detection system which is aimed to reduce

the computational-load requirements of modern radar

systems [3].

A typical radar system declares relatively few

target-present decisions and an overwhelming number

of target-absent decisions in unit time. The detector of

a typical system executes the same set of instructions

on each test cell for target detection. Therefore,

the detector unit can be said to have very poor

efficiency when one considers the amount of total

computational power used per target present decision.

The main idea of the present correspondence is to

reduce the overall load of the detector by eliminating

some of the incoming cells with a low-complexity
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Fig. 1. Proposed two-stage detector. Detector 1 is simple detector operating at unusually high PFA values, say 1=10. Detector 2 is a

high-complexity detector with good clutter suppression and operates at standard PFA values.

prescreening unit. It should be noted that in addition

to the computational-load reduction, the drop in the

sheer number of cells to be examined by the main

processor can also enable the designer to overcome

some other system bottlenecks, as described below.

A concrete application example for the proposed

detector can be given as follows. A radar system

with a rotary antenna is considered. The system

utilizes coded waveforms, has the range resolution

of ¢R = 10 m, has 10 antenna elements lined in

the elevation direction, and each antenna element is

sampled with Tc = 2¢R=c= 0:667 ns (one sample

per chip) and quantized at 15 bits/sample. A simple

calculation shows that this system produces a data rate

of 4.5 Gbits/s. The rapid (low latency) and reliable

transfer of data collected by a rotary antenna unit to

the main processor becomes a significant problem

on its own for high-resolution systems. An option for

the data transfer is the fiber optical slip ring structure

which is an opto-mechanical component capable of

transmitting 3—5 Gbits/s per optical channel. Note

that if the range resolution of the described system

is halved or if the number of antenna elements is

doubled or by simply switching to the double chip

rate operation, the data rate of the mentioned system

doubles to 9 Gbits/s, and it becomes necessary to

utilize more than one optical channel, which may pose

additional design difficulties. In this correspondence

we suggest using a new detection scheme, the

two-stage detector, to overcome the bottlenecks

in communication throughput and computational

requirements.

With the adoption of the proposed detector, the

data rate through the slip ring and the computational

load of the main processor can be significantly

reduced. The first stage of the proposed detector can

be implemented in the rotary antenna unit (before

the slip ring), and this stage can be set to operate at

the false alarm rate of, say, 1/10. Since only the cells

that are declared as suspicious by the first stage are

processed with the second stage, the data rate through

the slip ring and the computational load of the main

processor is immediately reduced by 1/10. Such a

large reduction in the requirements can significantly

relieve the design of high-resolution systems.

Figure 1 shows the flow diagram of the proposed

system. The vector r is the input representing the
data collected from a range cell of interest. The linear

combiners for the clutter suppression/target detection

are denoted by wH1 and w
H
2 [4, 5]. The first detector

has a low processing gain but operates at an unusually

high false alarm probability PFA1 ¼ 1=10. The data
associated with the target-absent decisions of the first

stage are immediately discarded; the rest is fed into

the second stage for further processing.

It should be clear that a target-present decision

is made only if a cell passes through both first and

second stages of the proposed system. Hence, the cells

discarded by the first stage can lead to the suppression

of the detection probability. In this correspondence

we examine the amount of probability suppression

and show that the amount is indeed tolerable if

the parameters of the system are suitably selected.

Some other side benefits, such as the reduction in

the communication data rate and the operation with

partial beamforming gain, are further discussed in the

numerical results section.

II. TWO-STAGE DETECTOR

In this section we present the probability density

function (pdf) of the decision statistics under

target-absent (H0) and target-present (H1) hypotheses.

We assume that the clutter at an individual range

cell is Gaussian distributed, as in [6], [7], [8]. The

extension of the present study to the non-Gaussian

clutter models, such as the ones that model the sea

clutter, warrants further investigation.

The signal at the input side of detector 1 can be

written as follows:

r= ®ssÁ+¾cc+¾ww: (1)

The elements of N £ 1 column vector r are the returns
collected from N consecutive pulses from a range

cell. Here we assume that the beamforming and
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fast-time matched filtering (pulse matched filtering)

have already been implemented and therefore the

processing gain due to the beamforming and the

matched filtering has been reflected over the signal

component of r, which is ®ssÁ. The vector s represents
the Doppler steering vector of the target which has the

following form

sÁ = [1 ejÁ ej2Á : : :ej(N¡1)Á]T: (2)

The scalar ®s is either a fixed constant (Swerling-0

target) or a circularly symmetric complex Gaussian

distributed random variable with zero mean and

variance ¾2s (Swerling-1 target). The clutter is

represented by a circularly symmetric, jointly

complex Gaussian distributed vector with zero mean

and covariance matrix ¾2cRc. Rc is normalized to
have unit values on its main diagonal and ¾2c is the

average power of the clutter. The electronic noise is

represented by w, and it is assumed to be circularly
symmetric, jointly complex Gaussian distributed

vector with zero mean and covariance matrix of ¾2wI,

where I is the identity matrix.
The target-present decision is produced when the

outputs of both detectors exceed their corresponding

thresholds. The probability of this event can be written

as PfjwH1 rj> °1, jwH2 rj> °2g, where °1 and °2 are
the thresholds. Here, wHk r corresponds to a linear
combination of the entries of r.
For the linear combiner w1, we suggest the cascade

of a single line canceller and Doppler processing,

wH1 = s
H
ÁM

H
1 M1. (It should be noted that this operation

is equivalent to the moving target indicator (MTI)

with a single line canceller [7, ch. 5.2] and can be

very efficiently implemented in hardware.) The sÁ
vector is the hypothesised Doppler steering vector of

the target whose definition is given in (2), and M1 is

the matrix representing MTI operation

M1 =

266664
1 ¡1 0 : : : 0 0

0 1 ¡1 : : : 0 0

...
...

...
...

...

0 0 0 : : : 1 ¡1

377775
(N¡1)£N

: (3)

The second detector is utilized less frequently

than the first one and allowed to be much more

complex. Here it is assumed that the second detector

implements the optimal signal-to-noise-and-clutter

ratio maximizing filter, which is w2 = (¾
2
cRc+¾

2
wI)

¡1sÁ
= R¡1cn sÁ, where Rcn = (¾

2
cRc+¾

2
wI) is the clutter-

noise covariance matrix.

For both detectors, the output signal to clutter-

noise ratio (at the steering direction of sÁ) can be
written as follows:

(Output SNCR)k,Á = Efj®sj2g
jwHk sÁj2
wHk Rcnwk

, k = f1,2g:

(4)

Fig. 2. Conceptual picture illustrating operation of two-stage

system.

Here, Ef¢g is the expectation operator. We would like
to remind that the output signal-to-noise-and-clutter

ratio value is the performance determining factor for

the conventional single-stage detectors and that it is

also critical for the proposed, two-stage system.

Figure 2 presents a conceptual picture that

illustrates the operation of two detectors. Each point

in this figure indicates a particular observation vector

r. The duty of a detector is to make a target-absent
or a target-present decision for each observation

vector. The area enclosed by the closed curves can

be considered as the observation points for which a

target-present decision is made. As expected, as the

enclosed area gets bigger, the probability of detection

increases, along with the probability of false-alarm.

Detector 2 is the optimal Neyman-Pearson detector

that encloses an area in the observation space, which

maximizes the detection probability at a fixed false

alarm probability (which is 10¡5 in the figure).
Detector 1 is an ad-hoc detector that has less efficacy

at target detection. In this figure it is pictorially shown

that, by increasing the false alarm probability of the

first detector to PFA = 10
¡1, we can almost cover the

whole area of the optimum detector. It is clear that if

the region of the optimal detector is totally enclosed

by the region of first detector, then there is no loss

in detection probability when two detectors are put

in cascade. Our goal in this correspondence is to

quantify this picture.

Different from the conventional (single-stage)

detectors, the detection of a target depends on the

joint distribution of z1 = jwH1 rj and z2 = jwH2 rj, where
z1 and z2 are the decision statistics to be thresholded,
as shown in Fig. 1. Before the derivation of the joint

distribution, we introduce the intermediate ẑ1 and ẑ2
random variables:·

ẑ1

ẑ2

¸
=

·
wH1

wH2

¸
| {z }
WH

r=WHr: (5)

In the equation above WH is a 2£N matrix whose

first and second rows are wH1 and w
H
2 , respectively.

The random vector r is jointly Gaussian distributed
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with zero mean and covariance matrix Rr (Rr =Rcn
under H0, Rr = (Efj®sj2gsÁsHÁ +Rcn) under H1).
Then, the joint distribution of ẑ1 and ẑ2 is Gaussian

distributed with zero mean and covariance WHRrW.
The elements of the covariance matrix can be

explicitly written as follows:

WHRrW=

·
wH1 Rrw1 wH1 Rrw2

wH2 Rrw1 wH2 Rrw2

¸
= 2

·
¾21 ½¾1¾2

½¾1¾2 ¾22

¸
: (6)

The distribution of the random variables z1 = jẑ1j
and z2 = jẑ2j can be calculated using pdf mapping for
two functions of two random variables, [9, p. 19]:

fz1,z2 (z1,z2)

=
z1z2

¾21¾
2
2(1¡ ½2)

exp

·
¡ 1

2(1¡ ½2)
μ
z21
¾21
+
z22
¾22

¶¸
£ I0

μ
z1z2½

¾1¾2(1¡ ½2)
¶
, z1 ¸ 0, z2 ¸ 0 (7)

where I0(¢) is the modified Bessel function of the first
kind and order zero. The definitions for °1, °2, and ½

are given in (6).

The joint cumulative density function (cdf) for z1
and z2 can be written as follows:

Fz1,z2 (z1,z2)

= 1¡ exp
μ
¡ z21
2¾21

¶
Q1

Ãs
z22

¾22(1¡ ½2)
,

s
½2z21

¾21(1¡ ½2)

!

¡exp
μ
¡ z22
2¾22

¶Ã
1¡Q1

Ãs
½2z22

¾22(1¡ ½2)
,

s
z21

¾21(1¡ ½2)

!!
(8)

where Q1(¢, ¢) is the first order Marcum-Q function.
The marginal probability density and the marginal

cumulative distribution function for zk reduce to

well-known Rayleigh distributions [8]:

fzk(zk) =
zk
¾2k
exp

μ
¡ z2k
2¾2k

¶
, zk ¸ 0, k = f1,2g

(9)

Fzk(zk) = 1¡ exp
μ
¡ z2k
2¾2k

¶
, zk ¸ 0, k = f1,2g:

(10)

A comparison of joint and marginal distributions

shows that the correlation between two detector

outputs significantly complicates the expressions

for the joint distributions. In spite of this algebraic

complication, we would like to remind that the

Marcum-Q and Bessel functions are readily available

in many general-purpose computing programs and

processed no more differently than the exponential

function.

A. False Alarm and Threshold Calculation

The thresholds associated with both stages can be

jointly selected to achieve a desired overall system

false alarm probability. Remembering that the sole

purpose of the first stage is to reduce the work load of

the second stage, we suggest setting the threshold of

the first stage in relation with the desired amount of

load reduction. For example, to achieve a 20 fold load

reduction, PFA1 can be selected as 1/20.

The false alarm probability of the first stage can be

written as Pfz1 > °1g= 1¡Fz1 (°1) = PFA1 where °1 is
the associated threshold. Using (10) the first threshold

can be determined as follows, [8]:

°1 =
q
¡2¾21 lnPFA1 : (11)

The second threshold (°2) is selected to meet the

system false alarm probability (PFAS ). The system false

alarm probability can be written as follows:

Pfz1 > °1, z2 > °2; H0g
= 1¡Fz1 (°1)¡Fz2 (°2)+Fz1,z2 (°1,°2) = PFAS :

(12)

The expressions for the joint and marginal cdf

functions in the equation above are given in (8) and

(10), respectively. When °1 is substituted from (11)

into this equation, we get the following

PFA1

241¡Q1
0@s °22

¾22(1¡ ½2)
,

s
¡2½2 lnPFA1
(1¡ ½2)

1A35
+exp

μ
¡ °22
2¾22

¶
Q1

0@s ½2°22
¾22(1¡ ½2)

,

s
¡2lnPFA1
(1¡ ½2)

1A
= PFAS : (13)

This equation is to be solved for °2 to achieve a

desired system false alarm probability.

The left hand side of (13) is a monotonically

decreasing function of °2 and is lower bounded by

zero. Hence °2 value for which the equality is satisfied

can be found by simple bisection methods. It should

be noted that the other parameters appearing in (13)

are given in (6) when Rr is substituted with Rcn.

B. Detection Probability Calculation

The expressions for the detection probability for

Swerling-0 and Swerling-1 targets are presented. In

the following section we numerically evaluate these

expressions and compare the performance of the

proposed system with the conventional system.

Swerling-0 Targets: This case corresponds to a

nonfluctuating target with a fixed, nonrandom return

power. For this case the parameter ®s in (1) is taken as

a constant. The signal-to-noise ratio (SNR) definition

is SNR= j®sj2=¾2w, which is the SNR at the input of
the clutter-suppressing filter.
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Under hypothesis 1 the joint pdf of ẑ1 and ẑ2 is

complex Gaussian distributed with the mean ®sW
HsÁ

and the covariance matrix WHRcnW. (The definition
of WH and the definitions for ¾21, ¾

2
2, ½ parameters

are given in (5) and (6), respectively.) In addition we

introduce mk = j®swHk sÁj for k = f1,2g, which is the
magnitude of the detector output in the absence of

clutter and noise. The joint probability density of z1
and z2 can be written as follows, [9, p. 20]:

fz1,z2 (z1,z2) =
z1z2

¾21¾
2
2(1¡ ½2)

exp

·
¡ 1

2(1¡ ½2)
μ
z21
¾21
+
z22
¾22
+
m22¾

2
1 +m

2
1¾
2
2 ¡ 2½m1m2¾1¾2
¾21¾

2
2

¶¸

£
1X
k=0

²kIk

μ
z1z2½

¾1¾2(1¡ ½2)
¶
Ik

μ
z1(m1¡ ½m2¾1=¾2)

¾21(1¡ ½2)
¶
Ik

μ
z2(m2¡ ½m1¾2=¾1)

¾22(1¡ ½2)
¶

(14)

where ²k is the Neumann factor. The Neumann factor

is equal to zero for k = 0 and is equal to 2 for other

values.

The density given in (14) can be interpreted as the

generalization of the well-known Rician distribution

to two correlated random variables. The cumulative

distribution function of this density is not available

in closed form; hence the detection probability is

numerically calculated by the probability integral

Pfz1 > °1,z2 > °2;H1g=
R1
°1

R1
°2
fz1,z2 (z1,z2)dz1dz2.

Swerling-1 Targets: This case corresponds to a

fluctuating target that has a random return power

at each burst. The random variable ®s, given in (1),

is independent of other random variables and has a

circularly symmetric complex Gaussian distribution

with zero mean and variance ¾2s . The SNR definition

for this case is SNR= ¾2s =¾
2
w, which is the ratio of

average signal power and the average noise power at

the input of the clutter-suppression filter.

Under hypothesis 1 the joint pdf of ẑ1 and ẑ2 is

complex Gaussian distributed with zero mean and

covariance matrix WH(Rcn+¾
2
s sÁs

H
Á )W. The detection

probability calculation is similar to the false alarm

probability calculation. The main difference is the

substitution of (Rcn+¾
2
s sÁs

H
Á ) (instead of Rcn) for Rr

matrix in (6). The probability of detection for this case

can be explicitly written as follows

Pd = P
1=(1+SNCR1)
FA1

241¡Q1
0@s °22

¾22(1¡ ½2)
,

s
¡2½2 lnPFA1

(1¡ ½2)(1+SNCR1)

1A35
+exp

μ
¡ °22
2¾22

¶
Q1

Ãs
½2°22

¾22(1¡ ½2)
,

s
¡2lnPFA1

(1¡ ½2)(1+SNCR1)

!
: (15)

Here SNCR1 is the signal-to-clutter-and-noise ratio

at the first detector output, which is SNCR1 =

¾2s jwH1 sÁj2=(¾2cwH1 Rcnw1). The other parameters
appearing in (15) are calculated by setting Rr =Rcn
+¾2s sÁs

H
Á in (6).

We note that when the threshold of the second

stage is taken as zero, the two-stage detector is

reduced to the single-stage detector, with the system

false alarm probability of PFA1 . The probability

detection for this system can be found by substituting

°2 = 0 in (15). By using the relation Q1(0,b) =

exp(¡b2=2) in (15), the detection probability for this
case can be found as Pd = P

1=(1+SNCR1)
FA1

, which is the

classical result for Swerling-1 targets, [8, p. 246].

We would like to note that the presented false alarm

and detection probability relations for the two-stage

detector contain the classical results for single-stage

detectors and generalizes them to the cascade of two

detectors.

C. Computation Cost Calculation

The computational load of the first stage is

determined by the MTI operation. The single

line canceller has no multipliers and has the

implementation cost of N ¡1 complex additions,
where N is the number of pulses utilized in the

coherent processing interval. The single-line canceller

is followed by the fast Fourier transformation

operation (FFT), which has the cost of O(N log2N)

additions and multiplications. The overall cost of this

stage becomes as followsμ
Computation Cost

1st Stage

¶
:N ¡ 1+O(N log2N) additions,
O(N log2N) multiplications:

The computational cost of the second stage has

two components: the cost for the construction of

the linear combiner (w2 = (¾
2
cRc+¾

2
wI)

¡1sÁ) and

the cost of the inner product calculation (wH2 r). It
should be noted that a new linear combiner should
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be constructed for every Doppler steering vector

sÁ, where Á= 2¼k=N and k = f0,1, : : : ,N ¡ 1g.
Considering this, the overall cost becomes as followsμ

Computation Cost

2nd Stage

¶
:

μ
Cost of Linear

Combiner Construction

¶
+(N2¡N) additions,
N2 multiplications:

The cost of inner product calculations is explicitly

given in the right-most side of the presented

relation. The cost of linear combiner construction

is not specified since there can be a number of

alternatives for its construction. For example, an

offline calculation of w2 = (¾
2
cRc+¾

2
wI)

¡1sÁ (for
various clutter-to-noise ratios (CNRs) and for every

sÁ) and its storage in the system memory can be

preferable for an implementation that has very limited

computational resources. For this choice there is no

cost in the calculation of the linear combiner. On the

other hand, if online computation is feasible, the cost

of linear-combiner calculation is O(N3) multiplications

for each sÁ, which is, in general, prohibitively high.

Furthermore, adaptive radar systems can estimate the

clutter covariance matrix from a set of neighboring

cells in the vicinity of the cell of interest and then take

the inverse of the estimated matrix. This operation

is called the sample matrix inversion (SMI) [7]. For

such systems the cost of covariance matrix estimation,

which is O(LN2), adds on top of other costs. (Here

L is the number of neighboring cells utilized in the

covariance matrix estimation.) To summarize the cost

of the second stage is at least O(N2) due to inner

product calculations and can be much more costly

depending on that particular system.

A numerical comparison of the computational

costs shows that the second stage is significantly

more costly to run than the first stage when

N > 16, which is the case for medium or high

pulse-repetition-frequency (PRF) systems. A simple

calculation shows that the suggested detector is

advantageous to implement, i.e., the implementation

cost of both stages is less than the implementation

cost of the single stage with the optimal detector if

PFA1 < 1¡Cost (Stage 1)/Cost (Stage 2). Hence, if the
cost of the first stage is 90% of the second stage, then

we can have a reduction in the implementation cost

by selecting PFA1 lower than 0.1. (The performance

degradation brought by this choice, in terms of

detection probability, is examined in the next section.)

Furthermore, it should also be remembered that

MTI operation, i.e., single line canceller followed

by FFT, can be very efficiently implemented using

standard field-programmable gate array (FPGA)

libraries, therefore, the cost of engineering labor in

the design and implementation of the first stage is also

minimum.

III. NUMERICAL RESULTS

The two-stage detector is not the optimal

Neyman-Pearson detector; therefore it is expected to

have a loss of detection probability at a fixed false

alarm rate. In this section we quantify this loss and

discuss whether the computation load reduction and

other benefits brought by the two-stage detector can

compensate the loss or not.

Scenario: A pulse Doppler surveillance radar with

a rotating antenna making 20 r/min is transmitting

16 pulses at a burst. The system has a 20-element

antenna array for elevation angle estimation. The

azimuth beam pattern of the antenna is taken in the

form of Gaussian shape with 3 dB beamwidth of

4 deg. The clutter is assumed to be mainly affected

by the antenna scanning modulation. Under these

conditions the clutter auto-correlation sequence can

be written as rc(k) = ¾
2
c ½
k2

c . The numerical value for

the parameter ½ can be calculated as ½c = 0:998.

The target is assumed to have an SNR of ¡10 dB
and the CNR is fixed to 30 dB. The SNR value

refers to the SNR before the beamforming, therefore

it is the SNR at every receiver element (after the

implementation of the pulse matched filter). If the

array is steered exactly in the elevation direction

of the target, then the SNR after beamforming is

increased by 20 (13 dB). The system operates at the

overall false alarm probability of 10¡5.
Swerling-0 Targets: Figure 3 shows the

probability of detection curves for the optimal

Neyman-Pearson detector and the proposed two-stage

detector. The detection probability is given for

different target Doppler frequencies by varying

the phase of the steering vector given in (2). The

detection probability of the two-stage detector is given

for PFA1 = f10¡1,10¡2,10¡3,10¡4g at the system false

alarm probability of PFAS = 10
¡5. Figure 3 shows that

the loss in the probability of detection is negligible for

PFA1 = 10
¡1 and can be tolerated up to PFA1 = 10

¡2.
The loss is quite significant for other PFA1 values.

Swerling-1 Targets: Figure 4 presents the same

comparison for Swerling-1 targets. Similar to the

Swerling-0 case, the loss is negligible for PFA1 = 10
¡1

and can be tolerable up to PFA1 = 10
¡2.

The presented probability of detection curves

confirm the conceptual picture given in Fig. 2, which

shows the first stage almost covers the region of the

optimal detector when its false alarm probability is

10¡1. For other PFA1 values some of the probability
mass contributing to the overall detection probability

is discarded by the first stage and that loss is not

recoverable by the second stage.

Comments on Computational Load and

Communication Data Rate Reduction: As discussed

in earlier sections, modern systems have the capacity

of implementing some parts of the processing chain

(such as matched filtering, beamforming) at the
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Fig. 3. Probability of detection comparison for proposed and optimal detector for Swerling-0 targets. Fig. 3(b) is zoomed version of

Fig. 3(a) showing waterfall region.

Fig. 4. Probability of detection comparison for proposed and optimal detector for Swerling-1 targets. Figure 4(b) is zoomed version of

Fig. 4(a) showing waterfall region.

antenna unit. For the examined radar system, the

output of the processing at the rotary antenna unit

can be transferred to the central processing unit

through the opto-mechanical components called slip

rings. By implementing the first stage at the antenna

unit, it is possible to reduce the amount of data

transmission through the opto-mechanical device. For

example, a choice of PFA1 = 1=20 leads to a 20-fold

communication data rate reduction and, at the same

time, a 20-fold work-load reduction for the main

processor. Such a large reduction in the requirements

with a little performance loss is highly desirable,

especially for high resolution systems.

Further Comments on Load Reduction: Figures 3

and 4 are generated with the assumption that

the elevation beam is steered towards the target

direction, that is, an SNR gain of 20 is realized by

beamforming. To further reduce the computational

load, one may choose to have fewer beams covering

the elevation sector of interest. The disadvantage of

fewer beams is the loss in the beamforming gain.

In Fig. 5 the same scenario is examined at

PFA1 of 1/20 for different SNR gains due to partial

beamforming. It can be noted from Fig. 5 that the

partial beamforming gains of f16,18,20g have almost
the same detection probability. (The worst case drop

in the detection probability is around Á= 0:19¼ and

has a value in between 0.04 and 0.06.) If a reduction

in beamforming gain is tolerable, i.e., a gain of

16 instead of 20, then the elevation beamwidth is

600 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 49, NO. 1 JANUARY 2013



Fig. 5. Comparison of detection probabilities at different

beamforming (BF) gains.

(roughly) increased by 20=16 = 1:25, and the elevation

sector of interest can be covered with less number of

beams, which leads to an additional 20% savings in

the computational cost.

Comments on CFAR Operation: The main

disadvantage of the proposed system is the difficulty

of calculating the constant false alarm rate (CFAR)

threshold. Since the incoming cells are selectively

transmitted to the second stage, there may not be a

sufficient number of cells in the CFAR window to

reliably estimate the detection threshold. A partial

remedy can be the implementation of a clutter map

in the first stage of the detector. The clutter map can

be periodically transmitted to the second stage to

assist the threshold calculation of the main detector

to partially compensate for the absentee cells in the

CFAR window.

IV. CONCLUSION

In this correspondence we present a

reduced-complexity detection system with a minor

loss in detection probability in comparison with

the optimal system. The system operates by sifting

the incoming data with a low-complexity detector

first and then by presenting the sifted data to the

scrutiny of the second detector. The goal is to discard

some of the cells with little computational effort. We

present the false alarm and the detection probability

relations for the proposed detector and show that the

proposed system leads to a significant reduction in

computational complexity (on the order of 10 folds)

and has a negligible loss in the detection probability if

its parameters (threshold values) are properly selected.

A future work is the extension of the present

study to non-Gaussian clutter distributions, especially

to aid the detection process in sea clutter. The

incorporation of CFAR to the presented system

is important and should be thoroughly examined.

Lastly, the applicability of the proposed method in

the resource management of multi-function radars can

be examined [10].
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