250

CHAPTER &
Optimum Lin¢ar Filters

w..rfu f Ca )
Q.‘_L
i@#?ﬁ M.ws&
. H?&mo, )
Mgaser r,w H@_m
Ksi on ) 2003.

(6-4.17) in the trequency domain by using (6.4.20). Indeed, we have
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where H,{¢/*} is the frequency response of the optimum filter. The nbove equation holds
for any filter, FIR or [IR, as long as we use the proper limits to compute the summation in
(6.4.19).

We will now obtain a formuta for the MMSE that holds only for IR filters whose
impulse response extends from —co 1o 0o, In this case, (6.4.16) is a convolution equation
that holds for —c0 < m < 0. Using the convolution theorem of the Fourier transform, we
obtain

b-ﬁ._ﬁn._.n.u
. R Anuev
which, we again siress, holds for noncausal 1R fillters oniy. Substituting into (6.4.22), we
obtain

Hyel™y = (6.4.23)

g [Rux (™)} o
Pomsof It R, (o) R (o7 1Ry (67 do
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or o= [ 11 = Gy (R, () b ©4.24)
2t Jon

where Gy (/%) is thé coherence function between x{n) and y(n).

This important equation indicates that the performance of the optimum filter depends
on the coherence between the input and desired response processes, As we recall from
Section 54, the coherence is a measure of both the noise disturbing the observarions and
the relative linearity between x(r) and y(n). The optimum filter can reduce the MMSE
at a certain band only if there is significant coherence, that is, QIT?J = 1. Thus, the
optimum filter #,(z) constitutes the best, in the MMSE sense, lincar relationship between
the stochastic processes x(ir) and y(n). These interpretations apply to causal IIR and FIR
optimum fitters, even if {6.4.23) and (6.4.24) only hold approximately in these cases {see
Section 6.6).

6.3 LINEAR PREDICTION

Linear prediction plays 4 prominent role in many theoretical, computational, and practical
areas of signal processing and deals with the problem of estimating or predicting the value
xtn) of a signal at the time instant n = ng, by using a set of other samples from the
same signal. Although linear prediction is a subject useful in itself, its importance in signal
processing is also due, as we will see later, 10 its use in the development of fast algorithms
for optimum filtering and i1s relation to all-pole signal modeling, .

6.5.1 Linear Signul Estimation

Suppose that we are given a set of values x(n), x(n — 1), ..., x{n — M) of a stochastic
process and we wish to estimate the value of x(rn — i}, using a linear combination of the
remaining samples. The resulting estimate and the corresponding estimation error are given

by

M
o .  Re-DE-Y G-k 650
and eMNn) & x(n — i)~ i(n -0
M
6.5.2
=3 cimx(n—k)  withoi(n) & 1 ©32
k=0

, where ¢4 (n) are the coefficients of the estimator as a functicn of discrete-time index n, The
process is illustrated in Figure 6.16. ’
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FIGURE 6.16

Hlustration showing the samples, esti and errors used in
linear signal estimation, forward linear prediction, and
backward Hnear prediction.

To determine the MMSE signal estimator, we partition n.m.m..uv as
) i1 M
eMm =3 cmxtt -t +xtn—i+ ¥ efmixin - k)
k=l) k=i+1 (65 )
2 off (it + x(n — i) + e ()t o
] G O

where the partitions of the coefficient and data vectors, around the i z._mo_sﬂo:nnr are easily
defined from the context. To obtain the normal equations and the MMSE for the oplimum
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linear signal estimator, we note thut

Desired response = x{n — i) data vector = xi(n)
. *1(n)
Using (6.4.6) and {6.4.9) or the orthogonality principle, we have
Ry R} |l eyin) ri{a)
RL0) Ra@ | |am |~ 7| nm 634
or more compactl w.w
RO G)el ) = —dW(m) (6.5.5)
and PIMny = Potn - iy + v (mey () + 2 (n)eatn) 6.5.6)
where for jk=1I,2
Rji(n) £ Efx;(mixf! ()] 6.5.7)
ri(n) 2 Efx;(n)x*(n — 0} (6.5.8)
Pe(n) = E(lx(m)?) (6.5.9)

For various reasons, to be seen later, we will combine (6.5.4) and (6.5.6) into a single
equation. To this end, we note that the correlation matrix of the extended vector

Xi(n)
i =|xtr— ) 6.5.100
Xz(n)
can be partitioned as
. Ry(n) ri(n) Ryz2(m)
Rin) = E(x(n)x" () = i) A= e 6.5.11)
R ratm) Ra(n)
with respect to its {th row and jth caluimn. Using (6.5.4), (6.5.6), and (6.5.11), we obtain
‘..w -
R{ME ) = | PPy |~ ithrow (6.5.12)
0

which completely determines the linear signal estimator ) (n) and the MMSE P& (),

IFM =2L and i = L, we have a symmetric linear smoother €(n) that produces an
estimate of the middfe sample by using the L past and the L future samples. The above
formulation suggests an easy procedure for the computation of the linear signal estima-
tor for any value of i, which is outlined in Table 6.3 and implemented by the func-
tionfei, Pi) =olsigest (R, 1). We next discuss two types of linear signal estimation that
are of special interest and have their own dedicated notation,

6,5.2 Forward Linear Prediction

One-step forward linear prediction (FLP) involves the estimation or prediction of the value
*(n} of a stochastic process by using a linear combination of the past samples x{n —
Do ... x(n — M) (see Figuce 6,16). We should stress that in signal processing applications

._ﬁﬁ H..:E mmn_.a_____.n_.au;gnmm._om:__nEﬁ:n_ equations is the result of arbitrarily sctting the coefficient
cgm) = 1 . -

TAHBLE 6.3 ) st
Steps for the pulation of op slgnal s.

mine the maurix Rn) of the extended data vector &(n). L
“. WH””n \he M % Af submatrix R n) of Ren) by removing its ith row and its fth column. el
n. Create the M x 1 vector 4%V} by exiraciing the ith column A" () of ficn) anul cemoving its ivh element.

i -]
3, Solve the Yinear system R nycl (n) = ~d!M(a) 1o obin e ().

i < 2t
5. Compute the MMSE £ (n) = (@0 e H e im).

of linear prediction, what is important is the ability to obtain a mﬁa a».”__su”ﬁ of w—mu“ﬁm_aﬂ
i it i ing the future. Thus, the term pi
tending that it is unknown, instead of qc_.nnﬁ...:w the ful redici
wﬁ“.; _amoa with signal estimation than forecasting in mind. The forward prediclor is a
linear signal estimator with i = 0 and is denoted by

M
L ey 2 x(n + ) al(mxin = k)

- o 6.5.13)
W = .
= x{n) + a pyx(n — 1)
where a(n) £ [a{m) az(n) -+ agrlnA’ (6.5.14)

i i ith ag(n) £ 1'as the FLP crvor filter.
is known as the forward linear predicior and ag{(n) wit [ ) A
"To obtain the normal equations and the MMSE for the optimum FLP, we note that for i o,

(6.5.11) can be written as .
Py '

Ren) = o (6.5.15)
R rf(n) R(n—1
where Rin) = E{x(a)x ()} (6.5.16)
and r(n) = Elx(n — D)} (6.5.17)
Therefore, (6.5.5) and A.m.u,.mv give ) :
R{n — Dayn) = —¢(m} {6.5.18)
and PE(n) = Py(n) + £ indag(n) (6.5.19)
! =7 (6.5.20)
or Rin) am) | |0

which completely specifies the FLP parameters.

6.5.} Backward Linear Prediction

{ - i of the fusre samples
his case, we want 1o estimate the sample x{n — M) in terms . mp!
_«__cnv .wwn_ﬁ.m 1}, ..., x(n = M + 1) (see Figure 6.16). The term gn..féi linear t«n&n_ﬁn
.Eh} is not accurate but is used since it is an established nn=<n.==e_._..> more .n_xu..o_uz.n_
name might be postdiction or hindsight. The BLP is basically a Yinear signal estimator wi
i = M ond is denoted by

M-1 :
&y 2 Y bnxtn — k) + x0n = M) 65.21)
k=0 .
=b () +xtn—M)
where © b(a) & (o) bain) - bar-y G0 e




2N s
ol is the BLP and ¢ i S . dnd
HAPTER G P=M, (6511 bwmﬂwms:: bartn) & 1 is the buckward prediction error. .EE. {BPEF). For the correlation vacior . 1
 Opimum Linear Fiers ‘ o : . £ & [r)r) - rD. (6529) i Prcion
_ ] r{n) . - - : . i . - ; X
Rin) = - . T (6.5.73) where r({) = E[x(n)x*(n — )], we can casily see that the cross-correlation vectors for the e
) Poln - M) FLP and the BLP are .
; f . .
= E = I} = . 6.5.30
Where () £ Efx(n)x"(n ~ M)} 6524 m .... p o
The optimum backward linear predictor is specified by ) ; and r = Efxinetn ~ M)} = Jr @330
, a0 - 1
Rim)by(n) = ~r(n) (6.5.25) _ .. ;
and the MMSE is i where J= m _ e m . My=g1f =1 (6.5.32) o
. m aas
P2) = Py(n = M) + v ()b, () (6.5.26) Lo .. 0 " o _
and can be put in o single equation as is the exchange matrix that simply reverses the order of the vector elements. Therefore, ’
’
bm] _ [0 ' Ra, = —¢* (65.33)
- (12 :
Ron{ " = - f = H
" Phn) 65.27) P =0y + ¥, | . (6.5.34) .
: . . Rb, = — 6.5.35 i B
In Table mA. we summarize the definitions and design equations for optimum FIR filtering o s b i ._“. ¢ ) _,
o E_M a__.ﬂ_.nﬁ_n%_m_m "i.r:_m the entries in this table, we can easily abtain the normal equations - : P =r(®+r"Jb, (6.5.36) i
an s _
© or the FLP and BLP from those of the optimum filier. where the Toeplitz matrix R is obtained from R by deleting the last column and row. Using
TADLE 6.4 . the centrosymmetry property of symmetric Toeplitz matrices
Summary of the design equations for optimum FIR filtering and prediction, . RJ] = JR* (6.5.37)
Optimum filter FLP BLP ’ and (6.5.33), we have
Yput data vestor x(a} - o JR*a:=-Jr o Rlal=-Jr (6.5.38)
Uﬁ H .
Em._ fesponse ¥(u} xind ] *tn— M) Comparing the last equation with (6.5.35), we have
Coeiticient vector hin) a) . bis) : . . E b, = Ja* o . (6.5, wev
" Estimation ervar efn) = yind — M (myxin ! Ctry = ximp + 2 - ~ b . . . . i e = Jag R - o ) - N
Nuormal equations Riadcotn) = dia) ,_.2: _ Ty +a ﬁ_a.: 1 ePtn) = xin — M) + b¥ (m)ntn) that is, the BLP coefficient vector is the reverse of the conjugared FLP coefficient vector.
MMSE pe " 7= Hawdnd = ~r() Ria)byin) = ~rotn) , Furthermore, from (6.5.34), {6.5.36), and (6.5.39), we have
alh = LGy —elndin)  Plud = Petm+a"onelint PP = Pytn — ) + 6 e f_pb :
Required moments R " . ° P& pl = (6.5.400
) s o r0 = Etxtn = i) ) = Elxta)zta - #)) : that is, the forward and backward prediction error powers are nn:u_..

g} = E[x{m)y*in)]
This remarkable symmetry between the MMSE forward and backward linear predictors

Sutintary processes  Rey = d. R i Toeplitz Ra, = —r* Bb, = —jr = b, = Ja} . holds for stationary prc but disappears for ionary pre Also, we do not
have such a symmetry if n criterion other than the MMSE is used .and the process 1o be
predicted is non-Guussian (Weiss 1975; Lawrence 1991).

6.5.4 Stationary Processes EXAMPLE &3.1, To illustrate the basic ideas in FLP, BLP, and linear waoo_z:m. we consider the
. second-order esti for stationacy p
_.—, the process X(n) is stationary, then the correlation matrix R(x) does nor depend on the The augmented cquations for the first-order FLP are (r ) is always reat)
time n and it is Toeplilz -
B (L) e.ﬂu: .a_q
0 Al e r(M) o] (o] Lo
. My o) e (M =1
R=|, . A . ( ) (6.5.28) and they can be solved by using Cramer’s ruie, Indeed, we obtain
: : P . L f
P M=) - Oy .Eﬁ._ 1:_
. s 0 A0 rayef ¢ daRy _ r@y=ir(n

- = Pl =— =
‘o 1= A detR| ri0)

Therefore, all the reselting linear MMSE signal estimators are time-invarians. If we define “det Ry ™ GetRy
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ry A
det
! det Ry detRy )
for the MMSE and the FLP. For the second-onder case we have
)
0 ) ] |% of
o [ a? ) =0
L2 @] o 0
a
whose solution is
f
@  FidaR; ¢ detRy
a, = ——= = ———
0 = Twmr; -T2y,
‘I N:_u_ fad U1 et [adtV L))
o ) ot 2 O] )t — 0
det Ry detR; 20y — (P
and
r*(1 0 *
T M O g O
e AL L) D U = e U BT (YR e
: detRy a detR; T Am— e
Similarly, for the BLP

w0 ] [s] e

U] __.“: e

where ﬂ: = L, we obtain

Tpb o det Ry

= 31 Al)]
t det Ry b

d =12
o v )

vnu_
0 () @] |% 0
Lad VI TR 1) %, ={0

P2 N () o2 P
pp_GtBs oy U@ @) e P2 -0
"y b =— by =
det Ry r2(0) = et )fZ T -y
We note that Pl=pt oV =™
and bw.«w = _TW :"N_ = &ﬂu_o n_...Nu = vﬁn_u_-

which is 4 result of the stationarity of x(n) or equivalendy of the Toeplitz structure of R,,.
For the lincar signal estimator, we have

@
r@® D ]| 0

[ OV (I M) n"u. =|py

P ) ) o

2
0

(2}

with £} = 1. Using Cramer’s rule, we obtain
P = .nn- —ﬂ-w— . ”
detRy”
M (@ r(ly  r(2)
— Py det det .
@ Fadet] oy 0] O r®] ey - r @l
o= o = e RD o - et
@ rl @
— Py del det
™ _ e =) B O | eet2) =@yt
&= Y T waRD r30) - (D2

) _ (2

from which we see that ¢~ = ¢5 " ; that is, we have a linear phase estimator.

6.5.5 Propertles

Linear signal estimators and predictors have some interesting properties that we discuss

(6.5.41)

y and, therefare, has linear phase (see

next.
PROPERTY 6.1, Ifthe process x(n} is staionary, then the symmetric, linenr smoother has linear
phase. S
Proof. Using the centrosymmetry property RJ = JR* and (6.5.12) for M = 2L, i = L, we
obtain oo
i=J"
that is, the sy ic, linear her has even sy
Problem 6.12).

PROPERTY &5, If the process x(n) is stationary, the forward prediction erver filter (PEF)
1, @t a3, ..., & is minimum-phase and the backward PEF by, by, ... Px.l... 1 i3 maximom-

phase.

Proof. The system function of the Mih-order forward PEF can be factored us

M X
An =1+ ot =G —azh

k=l
where g is a zero of A(z) and

M-1
Gy=1+ 3 met
k=)

..nu._.n. d jon of the

is an (M — 1)st-order filter. The filter A{2) can be impl

filters G(z) and 1 — gz~ (see Figure 6.17). The owtput s{n) of G(2) is

Ha) =xGm) +gprin = 1)+ -+ By sl — M+ 1}

- and it is easy 10 see thut
Elstn = D=0

Xt stab efm)
—_ G 1eg” ——>

{6.5.42)

FIGURE 6.17
The prediction exvor filter with one
zero factored out,
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because Elx(n — kje'* = 0 fq :
CHAPTERG expressed ..“M? L)elGmi] = Ofor | < k < M. Since the output of the second fllker can be EXAMPLE 651 A random sey xln) is g § by passing the white Gaussian noise 295
Optimunt Linear Fitters process win) ~ WN(O, 1) theough the lter ‘. SECTION 66
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£t} = wln) + Jwla — 1}

efay = sim) = gstn - 1y
we have C
Etstn — 0e"* ) = Elstn - 05*n)) - ¢* Etstn ~ Ds*on - 137 = 0

which implies that

rs(—1)
q P aind lgl =1
because q is equal to the normalized autocorrelation of s(a). If the p x(r} is not predictabl

thatis, Eflef ()] # 0, we have
Elle tn}) = Elef (mIs*(m) — g*s*(a = 1))
=Eiefts*onl  due10(6.5.42)
= E{ls(?) - g3n — 1}|s"(n)}
=rs {001 - i} £ 0
which implies that

gl <1

that is, the zero g of the forward PEF filteris strictly inside the unit circle, Repeating this process
w_,<_”. can show that all zeqas of A(z) are inside the unit circle; that js, A(z) is =._.=m_.==a.n_§.n.
is proof was presented in Vaidyanathan et al. (1996), The property b = Ja* is equivalent to ’

B(z) = nl.«_\_w Alu.v
Nl
which implies that B¢z) is a maxinmum-phase filter (see Section 2.4),

“m—ﬂ”m.u._é 653. The ..o:eui. and backward prediction eror filters can be expressed in terms
d n.«a:ﬁ.?n.q.. A; and the eigenveciors m_... of the correlation matrix R(n} as follows

H h - M+ 1 .
aotny | = Fotm M.” e LA i (6.5.43)
i
by (n) M+l
and i — pb L_ .
ﬁ I ‘ = Fn) M_” 5, v (654
i=

_ﬂsna qi.t Ea m. A1 are the first and last components of ;. The first equation of (6.5.43) and
e last equation in (6.5.44) can be solved ro provide the MMSEs 1 (n) and Phm), respectively.

Proof. See Problem 6.13,

ﬂwﬁwm RTY 634 Let %a ') be the inverse of the correlation matrix R(x). Then, the inverse of
the ith element of the ith column of R~ (1} is equa to the MMSE P (a), and the fth column
normalized by the fth element is equal to ¢/ (n). .

Froof. See Problem 6.14.
PROPERTY %.5.5. The MMSE prediction errors can be expressed as

“det R(m)
detRin — 1}

det Rin)
det Rin)

Plim = Eltny = (6.5.45)
Proof. Problem 6,17,

The previaus conceps are illustrated in the following example.

Determine the second-order FLP, BLEP, and symmetric linear mm.m.:._ smoother.

Solution, The complex power spectrum is
RO =H@OH Y =0+ + i =div d+ 4!

Therefore, the autocorrelation sequence is equat o r(0) = m. rixh) = w sy =0for Ji| > 2.
Since the power spectrum R{e/%) = m + cosw > O for al¥ &, the autocorrelation matsix is
positive definite, The same is true of any principal submatrix. To determine the second-order

linear signal estimators, we start with the matrix :

A
(=

e

[~ T

1
2
3
3
L3
2 4 .
and follow the p dure cutlined in Section 6.5.1 or use the formulas in Table 6.3. The results
Forward linear prediction (i = 0): {ag) — [1, —0.476,0.190) Ff = 10119
Symmetric linear smoothing (i = 1)z fee) > (0.4, 1, =04} P3 =0.8500

Backward linear prediction (f = 2): (b ) = (0.190, -0.476, 1} .v.... = L.0I19

The inverse of the correlation matrix R is
0.9882 04706 0.1882
R-!=|-04706 11765 —0.4706
0.1882 —0.4706 0.9842

and we see that dividing the lirst, second, and third columns by 0.9882, 1.1765, and (.9882
provides the forward PEF, the symmetric Hinear smoothing filter, and the backward PEF, respec- ~ .
tively. The inverses of the diagonal elements provide the MMSEs PY, P35, and £P. The reader

can casily sce, by computing the zeros of the corresponding systeny functi that the FLP-is
minimum-phase, the BLPis maximum-phase, and the symmetric linéar smoother is mixed-phase.,

It is interesting to note that the smoother performs better than either of the predictors.

6.6 OPTIMUM INFINITE IMPULSE RESPONSE FILTERS

S0 far we have dealt with optimum FIR filters and predictors for nonstationary and stationary
processes. In this section, we consider the design of optimum IIR filters for stationary
stochastic processes. For nonstationary processes, the theory becomes very complicated.
The Wiener-Hopf equations for optimum IER filters are the same for FIR filters; only the
limits in the convalution summation and the range of values for which the normal equations
hold are different. Both are determined by the limits of summation in the filler convolution
equation. We can easily see from (6.4.16) and (6.4.17), or by applying the orthogonality
principle (6.2.41), that the optimum [IR filter .

F =3 hallyen =k} - - (6.6.1)
- L

is specified by the Wiener-Hopf equations
S hotkdretm — k) = ryglm) - - {662y
X Tt ' )
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