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Chapter 1

Time Domain Analysis of Nth Order Circuits

We examine the time-domain description of the Nth order linear time-invariant circuits. Our interest is the charac-
terization of the dynamic circuits and the types of solutions with a particular focus on unforced (zero-input) solution.
We revisit the concept of natural frequencies and examine the modes of circuit and give the details on the response
calculation for circuits excited with initial conditions. Finally, we examine the concepts related to the stability of
circuits in the absence of external forcing. e topics presented in this chapter are fundamental to the general linear
system theory and are part of the fundamental knowledge base that every engineer practices.

e chapter starts with the discussion of linearity. Different aspects of linearity conditions for the dynamic
circuits (systems) are discusses. en the types of responses (particular, homogeneous etc.) and the methods of their
calculation are given. At some parts, the chapter carries a little more detailed information than typically required
required from a second year student. ese details are presented to show the subtle intricacies that may possibly
misguide or confuse the careful readers.

1.1 Operators, Systems, Linearity

An operator maps functions to functions. For the purposes of circuit theory, the operators can be considered to
operate on the time functions. For example, a circuit with the external input of cos(2t + 45˝) for t ě 0 can cause
a branch voltage of 1/2 cos(2t) Volts for t ě 0. e mapping of the functions between the external input (external
forcing)and the branch voltage can be interpreted as the action of an operator on the input of cos(2t + 45˝). e
conclusion is that the operator “modifies” or “reshapes” the given input function to another function. To implement
the operators, we build systems, i.e. built circuits. Among all systems, the linear systems are the most fundamental
and also the most suitable for analysis. Our discussion in this course is solely limited to linear and time-invariant
systems.

A system L with the input x(t) and the output y(t), L tx(t)u = y(t), is called linear if the following conditions
are satisfied:

1. Scaling: Ltαx(t)u = αy(t), @α

2. Superposition: Ltαx1(t) + βx2(t)u = αy1(t) + βy2(t), @α,@β

where L tx1(t)u = y1(t) and L tx2(t)u = y2(t)

It is important to note that the conditions should be satisfied for any x(t) and y(t), not for specially chosen ones.
It can be noted that when the input is the zero function x(t) = 0 (zero-input condition), then a linear system

should a zero output. (To show this, you may take x2(t) = x1(t) and α = 1, β = ´1 in the superposition property.)
e simple zero-input and zero-output condition can be quick check for the linearity of the system. But note that,
when the zero-input and zero-output check is satisfied; we can not say that the system is linear or not! If the zero-
input and zero-output condition is not satisfied, we can surely say that the system is not linear. Hence the zero-input
and zero-output condition is not sufficient to claim the linearity of the system; but it is a necessary condition to declare
the linearity of the system.
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Some important examples of linear operators, especially related to the circuit applications, are D = d
dt , D

´1 =
şt

´8
(¨)dt1 and the multiplication byR operator. In addition, it is also easy to see that the cascade application of these

linear operators also result in a linear operator; that is multiplication of x(t) by R and then differentiation is also
linear operator. (Make sure to show this result!)

Two linear operators A and B are said to commute if AtBtx(t)uu = BtAtx(t)uu. For example, if A is the
multiplication by R operator and B is the time differentiation, then AtBtx(t)uu = BtAtx(t)uu, i.e. two operators
commute. When two operators commute, this means that the order in their application does not matter. Hence,
for this example it does not matter whether you multiply the function x(t) by R first and differentiate the result or
differentiate first and then multiply the result by R.

As a second example to the commutativity, lets assume that A = d
dt and B =

şt
0(¨)dt

1. en AtBtx(t)uu =
d
dtt

şt
0 x(t

1)dt1u = x(t), while BtAtx(t)uu =
şt
0t d

dt1x(t1)udt1 = x(t) ´ x(0). Hence, these two operators does
not commute unless x(0) = 0. If we change the lower limit of integration operator B from 0 to ´8, that is
B =

şt
´8

(¨)dt1; and adopt the convention that x(´8) = 0 then d
dt and

şt
´8

(¨)dt1 commute. In this chapter, we use
the operator D to denote d

dt and D´1 to denote
şt

´8
(¨)dt1 unless otherwise is explicitly stated. With this definition

D and D´1 commute, then the complicated cascade application of these operators, such as D´1(D + 1)(D + 2),
(D+1)D´1(D+2), (D+1)(D+2)D´1 are identically the same. Essentially, with the adoption of the presented
notation and convention; the operator D and its inverse D´1 can be treated as like a ordinary polynomial in D.

An operator description such as y(t) =
(

d2

dt2
+ 3 d

dt + 2
)
x(t) can be considered as the cascade of ( d

dt + 2) and
( d
dt +1) operators. Here x(t) is the input and y(t) is the output of the system. In plain words, y(t) can be described
as the second derivative of x(t) plus 3 times the first derivative of x(t) and 2 times the function x(t). It is easy to see
that this operator is linear.

A more interesting question is the linearity of the following operator:(
d2

dt2
+ 3

d

dt
+ 2

)
y(t) = f(t) (1.1.1)

y(0) = y0

y1(0) = y1
0

Here f(t) is the input (the forcing term) and y(t) is the output of the system. We know that the initial conditions
of y(t) at t = 0. Hence we have a typical 2nd order constant coefficient differential equation.

Let’s check whether the system given in (1.1.1) is linear or not. For linearity, if the input is zero function (f(t) =
0), the output y(t) should be identical to zero. If this is not true, the system can not be linear. is shows that unless
both initial conditions are zero, this system can not be linear. So, the initial conditions should be zero for linearity.
(Going back to EE201, youmay remember that we enforce the zero-state condition (all zero initial conditions) for the
impulse and step response calculations. e zero-state responses, by their definition, satisfy the linearity conditions
and this allows us to superpose many external inputs for the zero-state solution!) Let’s assume zero initial conditions
in (1.1.1): (

d2

dt2
+ 3

d

dt
+ 2

)
y(t) = f(t) (1.1.2)

y(0) = 0

y1(0) = 0

e zero-initial conditions is not sufficient to guarantee the linearity. To check the linearity of the system in (1.1.2),
we assume that the input f(t) and causes an output y(t), i.e. the output y(t) is the zero-state solution to the
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input f(t). If the input is changed to αf(t) (α is an arbitrary scalar), the response should be αy(t) for linearity.
is is indeed true for the given equation. We can show this by multiplying both sides of the differential equation(

d2

dt2
+ 3 d

dt + 2
)
y(t) = x(t) by α. Once this is done, we get another differential equation whose input is αf(t). It

is clear that αy(t) satisfies this differential equation. is is what we want to show! (Note that initial condition for
the system with input αx(t) is all zero, so αx(t) also satisfies the initial condition.)

To check the superposition property of the linear systems, we multiply both sides of
(

d2

dt2
+ 3 d

dt + 2
)
yk(t) =

fk(t) by α and β to get
(

d2

dt2
+ 3 d

dt + 2
)
αy1(t) = αf1(t) and

(
d2

dt2
+ 3 d

dt + 2
)
βy2(t) = βf2(t). By adding these

two equations we get
(

d2

dt2
+ 3 d

dt + 2
)

tαy1(t) + βy2(t)u = αf1(t) + βf2(t). Hence it is shown that if input f1(t)
causes y1(t) and f2(t) causes y2(t); then the input αf1(t) + βf2(t) results in αy1(t) + βy2(t) at the output. Again
please note that, it initials conditions are not zero, the superposition principle is not satisfied. If y1(t) and y2(t)

are not zero at t = 0, then αy1(0) + βy2(0) can not be zero (for any α and β), hence the initial condition of the
differential equation can not be satisfied with the solution of αy1(t) + βy2(t).

In the following section, we start the solution of dynamic circuits. Our goal is to characterize the mapping
between the input and output of a linear time-invariant dynamic circuit. e input can be the initial conditions,
external forcing or both.

1.2 Types of Responses

e solution of Nth order constant coefficient differential equations is accomplished in a few steps. e steps of
solution carry important on their own. ese steps towards the solution can be considered as the zero-input solution,
the zero-state solution and their combination is the complete solution. We illustrate these solutions on the following
example: (

d2

dt2
+ 3

d

dt
+ 2

)
y(t) = x(t)

y(0) = y0

y1(0) = y1
0

1.2.1 Circuit Resposes

Zero-Input Response:

As the name implies, this is the response when the input is the zero function (hence x(t) = 0). is is the response
solely due to the initial conditions. (

d2

dt2
+ 3

d

dt
+ 2

)
yzi(t) = 0

y(0) = y0

y1(0) = y1
0

e solution of the given differential equation can be found as yzi(t) = c1e
´t+ c2e

´2t for t ě 0. Here c1 and c2 are
arbitrary real numbers, i.e. for any c1, c2 the differential equation is satisfied. e zero-input solution is the unique
solution satisfying both the differential equation (the signal evolution rule for t ą 0) and the initial conditions. (You
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may also consider
(

d2

dt2
+ 3 d

dt + 2
)
as an operator At¨u. en the equation

(
d2

dt2
+ 3 d

dt + 2
)
yzi(t) = 0, can be

written as Atyzi(t)u = 0. at is, we are seeking the null space of the operator A. e null space of A is spanned
by e´t and e´2t, that is any function that can be written as a linear combination of e´t and e´2t is in the null space,
c1e

´t + c2e
´2t. e solution we seek is the one in the null space satisfying the initial conditions.)

e initial conditions are found as follows:

yzi(0) =
[
c1e

´t + c2e
´2t

]
t=0

= c1 + c2 = y0

y1
zi(0) =

[
´c1e

´t ´ 2c2e
´2t

]
t=0

= ´c1 ´ 2c2 = y1
o

From these two equations, we can get c1 = 2y0 + y1
0; c2 = ´y1

0 ´ y0 and the zero-input response (the special point
in the null-space) is

yzi(t) = (2y0 + y1
o)e

´t ´ (y1
o + y0)e

´2t

Zero-state Response:

Zero-state response is the response due to the forcing term, (external excitation). It is assumed that the circuit or the
system at rest, that is having zero initial conditions. Another way of expressing the same fact is that the system has
no energy at t = 0. (

d2

dt2
+ 3

d

dt
+ 2

)
yzs(t) = f(t)

yzs(0) = 0

y
1

zs(0) = 0

e solution for the zero-state response depends on the input f(t) and the initial conditions. As an example, assume
that the input is unit step function, f(t) = u(t), then the response is yzs(t) = 1

2 + c1e
´t + c2e

´2t for t ą 0. is
is solution satisfying the differential equation for t ą 0. To meet the initial conditions, c1, c2 should be properly
selected. If we do that, we get the solution satisfying both the differential relation and initial conditions as follows
yzs(t) =

1
2 ´ e´t + 1

2e
´2t for t ě 0.

Note that the zero-state response obeys the linearity conditions. Because of this, we define the impulse response,
the step response and other responses only for the zero-state condition. is is critical and it can be difficult to
appreciate the importance of this at an initial introduction.

Complete Response:

Complete solution of the circuit which is the combination of both zero-input and zero-state responses.

ycomp(t) = yzi(t) + yzs(t)

For the example given, the complete solution for unit-step input is ycomp(t) =
1
2+(2y0+y1

0´1)e´t´(y1
0+y0´1

2)e
´2t.
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1.2.2 Homogeneous and Particular Solutions

Homogeneous Solution:

is is the solution of the differential equation when forcing term is equal to zero.Homogeneous solution is similar
to the zero-input response, but not the same. e difference between the homogeneous solution and the zero-input
response is that the homogeneous solution contains undetermined coefficients typically shown as c1 and c2. While
the zero-input solution, does not have any undetermined parameters; it is the solution of a circuit when the input
is zero (as the name implies) and there is only initial conditions exciting the circuit. In other words, when you fix
the undetermined parameters of the homogeneous solution to match a given set of initial conditions, you have the
zero-input solution.

e following shows the distinction between homogeneous and zero-input solutions(
d2

dt2
+ 3

d

dt
+ 2

)
yh(t) = 0 (1.2.1)

yh(t) = c1e
´t + c2e

´2t

yzi(t) = yh(t)
§

§

đ

c1=2, c2=´2
= 2e´t ´ 2e´2t

As shown in (1.2.1), the zero-input solution is formed by setting c1 and c2 to meet zero-initial conditions. In this
example, they are arbitrarily selected to be 2 and -2.

From a more general perspective, yh(t) is not a response to a particular initial conditions; but it is a solution space
which is the null space of the operator, yh(t) = c1e

´t + c2e
´2t . e zero-input solution is a specific point in the

null space. We select this specific point by setting c1 and c2.

Particular Solution:

is is the solution of the differential equation due to the forcing terms. is solution is similar to the zero-state
solution, but not the same. (

d2

dt2
+ 3

d

dt
+ 2

)
yp(t) = x(t) (1.2.2)

For x(t) = 1, yp(t) = 1
2 . e zero-state solution for this input is yzs(t) = 1

2 + c1e
´t + c2e

´2t where c1 and c2
should be selected to meet zero-initial conditions, i.e. all state variables are zero.

Complete Solution: is is the solution of the system, which is

ycomp(t) = yh(t) + yp(t) (1.2.3)

Note that yh(t) contains undetermined c1 and c2 coefficients. ese coefficients should be set to meet the given
initial conditions.

e same complete solution can also be written as ycomp(t) = yzi(t) + yzs(t). Note that yzi(t) and yzs(t) does
not contain any undetermined coefficients.
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-
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iL(0) = I0

Figure 1.3.1: A 2nd order circuit for the illustration of the solution approach.

1.3 Solution of Nth order Dynamic Circuits

We proceed towards the solution of Nth order dynamic circuits. In EE201, we have studied RC, RL and RLC
circuits. ese circuits form the special cases of first and second order circuits of the general Nth order circuits.

We present two analysis approaches. In the first approach, we use a scalar Nth order differential equation and
find its solution. en we repeat the analysis with the state equations. We would like to illustrate the equivalency
of two techniques and emphasize the power of state-equation formalism in comparison to other methods. In this
section, we examine the circuit given in Figure 1.3.1.

1.3.1 Solution by 2nd order scalar differential equation

e circuit contains two nodes (not counting datum) and a single voltage source, therefore the solution can be ex-
pressed through a single node equation. en writing KCL at node whose voltage is VC(t), we get

CV̇c(t) +
VC(t)

R
´

(
iL(0) +

1

L

ż t

0
(Vs(τ) ´ VC(τ))dτ

)
= 0 (1.3.1)

By taking the second derivative of the equation above and remembering the fundamental theorem of calculus,
d
dt

şt
0 x(τ)dτ = x(t), we get

CV̈c(t) +
V̇c(t)

R
+

VC(t)

L
=

Vs(t)

L
(1.3.2)(

D2 +
1

RC
D +

1

LC

)
VC(t) =

Vs(t)

LC
.

To solve the differential equation, we need two initial conditions. We can get these initial conditions at t = 0+

through the analysis given in Figure 1.3.2.
From the circuit given in figure 1.3.2, we get the initial conditions for VC(0

+) and V 1c(0+) as follows:

VC(0
+) = V0

V
1

c(0+) =
1

C

(
I0 ´

V0

R

)
(1.3.3)

Now, we are ready to go and find the solution to the differential equation. We rewrite the equation below for
convenience.
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I0

+
- RVs(0

+) +
- V0

Ic(0)=CV’c(0
+)

at t=0+

+

Vc(0
+)

-

I0

+
-
+
- RVs(0

+) +
-
+
- V0

Ic(0)=CV’c(0
+)

at t=0+

+

Vc(0
+)

-

Figure 1.3.2: Circuit shown Figure1.3.1 at t = 0+.

(
D2 +

1

RC
D +

1

LC

)
VC(t) =

Vs(t)

LC
(1.3.4)

VC(0
+) = V0

V
1

c(0+) =
1

C

(
I0 ´

V0

R

)

First, we focus on the zero-input response, that is(
D2 +

1

RC
D +

1

LC

)
V zi
C (t) = 0 (1.3.5)

V zi
C (0+) = V0 (1.3.6)

d

dt
V zi
C (0+) =

1

C

(
I0 ´

V0

R

)
(1.3.7)

en, we use the method of undetermined coefficients, that is we assume that

V zi
C (t) = ceλt (1.3.8)

is is a guess (an educated guess) about the form of the solution. We do not know c and λ yet and we hope to get
them right so that we have the solution of the differential equation. Due to uniqueness of the solution for differential
equations, if we can find a solution, it is the solution.

At this point we set some numerical values for R, L and C. Setting R = 1/3,C = 1 and L = 1/2, we get(
D2 + 3D + 2

)
VC(t) = 2Vs(t) (1.3.9)

VC(0
+) = V0

V
1

c(0+) = I0 ´ 3V0

By substituting V zi
C (t) = ceλt into

(
D2 + 3D + 2

)
V zi
C (t) = 0 we get,(

λ2 + 3λ+ 2
)
ceλt = 0

is equation has to be satisfied. Since eλt ą 0 for all t and λ, we can divide both sides by eλt and get
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(
λ2 + 3λ+ 2

)
c = 0 (1.3.10)

To satisfy the last equation, we can set c = 0. is indeed guarantees the equality of right and left hand side of
(1.3.10); but this is an uninteresting solution, V zi

C (t) = 0. Furthermore it is not possible to satisfy the given non-
zero initial conditions with this solution (this solution is called trivial solution). So we would better assume that
c ‰ 0 and look for another way satisfying (1.3.10). Since c ‰ 0, we can dividing both sides of (1.3.10) by c to get(

λ2 + 3λ+ 2
)
= 0

e solution of this polynomial equation is λ = t´1,´2u. en for c ‰ 0 and λ = t´1,´2u are two possible
non-trivial solutions!

V zi
C (t) = ce´t + de´2t (1.3.11)

Each term in the zero-input solution is called a mode of the system. e given example has two modes, ce´t and
de´2t. e modes have different decay rates. In this example, the second mode (the mode with λ = ´2) decays two
times faster than the other mode. First order RC and RL circuits have a single mode, their decay is 1/τ where τ is
the time-constant of the circuit.

Single Mode Excitation

In this section, we examine an interesting problem. e problem is the selection of initial conditions such that there
is only mode of the circuit is excited. In other words, we would like to find a specific initial condition to excite a single
mode of the circuit or equivalently, we would like to have solution in the form V zi

C (t) = ce´t or V zi
C (t) = de´2t for

the example given in Figure 1.3.1.
If the solution is in the form, V zi

C (t) = ce´t; then at t = 0+, we have V zi
C (0) = c and d

dtV
zi
C (0) = ´c. From

Figure 1.3.2, we can note the relation between initial conditions and the capacitor voltage and its derivates as follows:

VC(0
+) = V0

V
1

C(0
+) = I0 ´ 3V0

Finally, then by setting I0 = 2c, V0 = c, or
[

VC(0
+)

IL(0
+)

]
= c

[
1

2

]
, leads to a solution in the form V zi

C (t) = ce´t.

So by setting the the initial voltage of capacitor half of the initial current of inductor, we can excite the mode with
λ = ´1.

Similarly to excite the mode with λ = ´2, we seek a solution in the form V zi
C (t) = de´2t; we should have initial

conditions V zi
C (0) = d and d

dtV
zi
C (0) = ´2d. en setting I0 = d, V0 = d, or

[
VC(0

+)

IL(0
+)

]
= d

[
1

1

]
, enables us

to excite the faster decaying mode.

Response to arbitrary initial conditions

Assume that
[

VC(0
+)

IL(0
+)

]
=

[
V0

I0

]
is given. It is possible to express is any initial condition as a linear combination

of
#[

1

2

]
,

[
1

1

]+

as shown below:



1.3. Solution of Nth order Dynamic Circuits U 13

+
-

L

CR

iL
+

Vc

-

Vs(t)
Vc(0) = V0

iL(0) = I0
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L

Vs+
-
+
-

L

CR

iL
+

Vc

-

Vs(t)
Vc(0) = V0

iL(0) = I0

C

R

L

Vs

Figure 1.3.3: An RLC Circuit and its proper tree

[
V0

I0

]
= (I0 ´ V0)

loooomoooon

α

[
1

2

]
+ (2V0 ´ I0)

loooomoooon

β

[
1

1

]

= α

[
1

2

]
+ β

[
1

1

]

Hence, every initial condition can be expressed as a linear combination of two special vectors with the combination
coefficients α and β. Note that, when either α = 0 or β = 0; we have the single mode excitation. erefore, it can
also be noted from the last equation that we have expressed an arbitrary initial condition as a linear combination of
single mode exciting initial conditions. en the solution for an arbitrary input is as follows:[

VC(t)

IL(t)

]
= α

[
1

2

]
e´t + β

[
1

1

]
e´2t

where α = I0 ´ V0 and β = 2V0 ´ I0.
It can be observed if both α and β have the same order of magnitude, then the mode with slower decay rate

becomes the dominant mode as t Ñ 8.

1.3.2 Solution by 1st OrderMatrix Differential Equations (State Equations)

We examine the same circuit via the state equations. Figure 1.3.3 shows the circuit and its proper tree.
e state equations of the circuit can be written as follows:[

V̇c(t)

İL(t)

]
=

[
´1
RC

1
C

´1
L 0

][
VC(t)

IL(t)

]
+

[
0
1
L

]
Vs(t) (1.3.12)

e initial conditions for the first order 2x2 matrix differential equation is given as follows:[
VC(0

+)

IL(0
+)

]
=

[
V0

I0

]
(1.3.13)

First, we show that two descriptions of the circuit that is the state equation form and node equation form can be
retrieved from each other.

To get the node equation form the state equation,

1. Take derivative of the first state equation to get V̈C(t) =
´1
RC V̇C(t) +

1
C İL(t).

2. Substitute IL(t) from second state equation to get V̈C(t) =
´1
RC V̇C(t) +

1
C (

´1
L VC(t) +

1
LVs(t)).
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3. After moving all terms involving unknowns to the left, we get
(
D2 + 1

RCD + 1
LC

)
VC(t) =

Vs(t)
LC .

e step given above show that the two formalisms, i.e. the 2nd order scalar differential equation and the 1st order
2 ˆ 2 matrix differential equation, are equivalent; that is one can go back and forth between these two descriptions.
is does not mean that we should use only one of them. We use whichever is more appropriate for our purposes.

Now let’s set R = 1/3, C = 1 and L = 1/2 in the state equations:[
V̇C(t)

İL(t)

]
=

[
´3 1

´2 0

][
VC(t)

IL(t)

]
+

[
0

2

]
Vs(t) (1.3.14)

[
VC(0

+)

IL(0
+)

]
=

[
V0

I0

]
(1.3.15)

Now, we adopt the classical notation for state variables:

x(t) =
[

VC(t)

IL(t)

]
(1.3.16)

e vector x(t) is called the state vector. e state vector traces the locus of state variables in time. e state
equation can be written in the following canonical form

_x(t) = Ax(t) + bu(t) (1.3.17)
x(0) = x0

HereA is a matrix corresponding to
[

´3 1

´2 0

]
, b is a vector corresponding to

[
0

2

]
, u(t) is the external excitation

(Vs(t)) and x0 is the initial condition vector. As we did before, we focus on zero-input response.
e solution of this system is similar to the scalar case. We assume that xzi(t) = ceλt and substitute this guess

into the matrix differential equation. Once we do that, we get:

cλeλt = Aceλt

By dividing both sides by eλt we get,

Ac = λc (1.3.18)

is shows that the eigenvalues of A are the natural frequencies that we are looking for.
For the presented example, the eigenvalues of A are the roots of the following equation:

det(λI ´ A) =

ˇ

ˇ

ˇ

ˇ

ˇ

[
λ+ 3 ´1

2 λ

]ˇ

ˇ

ˇ

ˇ

ˇ

= λ2 + 3λ+ 2 (1.3.19)

Hence, they are λ = t´1,´2u. en the form of the solution is

xzi(t) = ce´t + de´2t (1.3.20)
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Note that if the system examined here is a 2nd order system. If the system an Nth order system the same result is
exactly valid. In other words, the natural frequencies are the eigenvalues of A matrix and the only difference is that
A is a N ˆ N matrix.

Single Mode Excitation

To excite only one mode, we need to find suitable initial conditions. By setting either c or d in xzi(t) = ce´t+de´2t

to the zero vector, we can find the conditions for single mode excitation.
Let’s find the initial conditions to excite the mode with λ = ´1 for the presented example. en xzi(t) = ceλt

and substituting this equation into _x(t) = Ax(t) (remember that u(t) = 0, since this is the zero-input solution), we
get

Ac = λc (1.3.21)

is equation shows that the c vector is should be the eigenvector of A for single mode excitation. To find this
eigenvector, we solve for c in Ac = λc. By moving λc to the left hand side we get (λI´A)c = 0. After substituting
λ = ´1 into this equation, we get: [

2 ´1

2 ´1

]
c =

[
0

0

]
(1.3.22)

enwe get c =Γ1

[
1

2

]
.eeigenvector ofA corresponding to theλ = ´2 can be found similarly as d =Γ2

[
1

1

]
.

e variables Γ1 and Γ2 are arbitrary scalars, scaling the eigenvectors.

Response to arbitrary initial conditions

Let’s assume that initial conditions for the studied problem is given as
[

VC(0
´)

IL(0
´)

]
=

[
10

14

]
. e given initial

conditions pass to t = 0+ as it is, since there are no impulses or switches that are produce a discontinuity in the state
variables. e initial conditions at t = 0+ can be written as a linear combination of eigenvectors of A.[

VC(0
+)

IL(0
+)

]
=

[
10

14

]
= Γ1

[
1

2

]
+ Γ2

[
1

1

]

=

[
1 1

2 1

][
Γ1

Γ2

]

From the last equation, we can solve for Γ1 and Γ2 to get Γ1 = 4 and Γ2 = 6. Hence the initial condition vector x0
can be written as x0 = Γ1e1 + Γ2e2. (Remember ek is the eigenvector of A corresponding to the eigenvalue of λk.)
If either Γ1 or Γ2 is equal to zero, then a single mode is excited and the response is Γkekeλkt; when both modes are
excited the response becomes x(t) = Γ1e1eλ1t + Γ2e2eλ2t, which is in this case[

VC(t)

IL(t)

]
= Γ1

loomoon

4

[
1

2

]
exp( λ1

loomoon

´1

t) + Γ2
loomoon

6

[
1

1

]
exp( λ2

loomoon

´2

t)

Figure 1.3.4 shows the state trajectories of the system. In other words, this figure shows the locus of state variables
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Figure 1.3.4: State trajectories of the system

as time progresses. e circles on the curve indicates the position of the state variables at the indicated time. It should
be clear that all three curves approach the origin as time progresses, but their “speed” to reach the final destination
is different from each other. Two of the three curves shown in this figure correspond to single mode excitation. e
top and the bottom curves are actually straight lines and the points on these lines can corresponding to the initial
conditions exciting a single mode. If initial condition happens to be on these straight lines, the response approaches
the origin on these lines, i.e. IL(t)/VC(t) = IL(0

+)/VC(0
+) for all t. We can also note that the curve corresponding

to the mode with λ = ´2 or the response with e´2t term decays faster than the other mode.

e third curve in the figure corresponds to an initial value of
[

VC(0
+)

IL(0
+)

]
=

[
10

14

]
. Note that this curve is

not a straight line. As discussed before, the response to this initial condition can be expressed as superposition of two
modes. Hence the response to this initial condition has a fast decaying mode and a slow decaying moving mode. As
time progresses, the faster moving mode fades away and we are left with slower moving mode. You can note that the
middle curve gets closer to the slower decaying mode as time progresses.

1.3.3 Particular Solution

e particular solution of a differential equation is the part of the solution due to the external input. In this section,
we examine the the methods of finding particular solution. e main problem presented in this section is finding the
response to the exponential input.
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eComplex Exponential Function

e complex exponential function is the generalization of conventional exponential function to the complex variables.
e conventional exponential function is defined as follows:

ex =
ÿ

k

xk

k!
, @x P R

e expansion above is called the power series expansion of the exponential function and the region of convergence
is the whole real line. e complex exponential is the extension of the same operation to the complex field:

ez =
ÿ

k

zk

k!
, @z P C

We focus on the exponential function f(t) = eλt. Here t is a real variable and λ is a complex number. We view this
function as a complex valued function of a real variable. (Interested students can also research complex valued and
complex variable functions on the internet. ese functions are especially important in electromagnetics and signal
processing and some definitions of the specific for the complex calculus is considered as more fundamental than their
real valued special cases.)

We examine 5 important special cases of f(t) = eλt:

1. λ is real and λ ą 0, i.e. λ = 2, f(t) = e2t. As t increases, the function increases without a bound.

2. λ is real and λ ă 0, i.e. λ = ´1, f(t) = e´t. As t increases, the function exponentially decays to zero.

3. λ is purely imaginary, i.e. z = jω, (ω P R), f(t) = ejωt. Remembering the Euler’s formula (ejϕ = cos(ϕ) +

j sin(ϕ)); we can express f(t) as f(t) = cos(ωt) + j sin(ωt). is is an example of real variable, complex
valued functions.

4. λ is zero, f(t) = 1.

5. λ has non-zero real and imaginary parts, i.e. z = σ+jω, f(t) = eσtejωt, both σ and ω are assumed to be real.
en f(t) is the multiplication of the cases 1 and 3 (or the multiplication of cases 2 and 3). e magnitude of
f(t) which is |f(t)| = eσt which is either a decaying exponential or a blowing up exponential.

e cases of listed above cover a fairly general class of inputs called as the family of exponential inputs. Below,
we focus on the response due to the exponential signals. is type of inputs has an intimate connection with the LTI
systems which we demonstrate in the next section.

Finding the Particular Response of Nth Order Dynamical Systems for Complex Exponential Input

We continue with the example presented earlier. e circuit shown in Figure 1.3.1 is described by the following
differential equation: (

D2 + 3D + 2
)
V p
C(t) = 2Vs(t) (1.3.23)

We do not state the initial conditions, since our goal is the study of the particular solution. V p
C(t) is the particular

solution for the input Vs(t). We assume that Vs(t) = est and s P C.
Our method of solution is the simplest possible one. We make an educated guess on the solution and claim the

following:
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V p
C(t) = Aest

Here A is the unknown parameter of the solution which can be a complex number in general. Note that the guess
is in the same of form of the excitation! (e educated guess is due to well known properties of the exponential
function under the differentiation, that is Dest = sest. Considering est as the input function at the specific “fre-
quency” of s, then the output of the differentiation system is the input times s. In other words, at the differentiation
output the function is only scaled by s, its form remains intact. e functions whose form does not change after
a transformation/operator are called the eigenfunctions of that transformation. Hence the exponential function is
eigenfunction of the derivative operator. Given all these, the solution of (1.3.23) when the right hand side of this
equation Vs(t) = est can be V p

C(t) = Aest, since you can not get rid off an exponential by taking its derivative and
summing up by other exponentials!)

To find the unknownA, we substitute the guessV p
C(t) = Aest into the differential equation,

(
D2 + 3D + 2

)
V p
C(t) =

2est and get the following: (
s2 + 3s+ 2

)
Aest = 2est

From the last equation, we get the unknown A as

A =
2

s2 + 3s+ 2

en the solution becomes

V p
C(t) =

2

s2 + 3s+ 2
est

Remember that the solution for the differential equations is unique under fairly general conditions, therefore we do
not need to look any further.

An important note is that when s = t´1,´2u, that is when the external input is e´t or e´2t, the guess of
V p
C(t) = Aest does not work. (A becomes undefined due to the zero in the denominator ofA.) In other words, when

the input excitation matches the natural frequencies, we should do something else, probably make another guess. (As
you may remember from the differential equations course, the guess should be corrected to Ate´t +Be´t.)

Now we examine some special cases:

Case 1. Vs(t) = e´5t

Our goal is finding the (particular) solution of the following equation,
(
D2 + 3D + 2

)
V p
C(t) = 2e´5t. is

is the special case of the general problem described earlier, but for clarity let’s repeat the steps one more time.
Assume a solution in the form V p

C(t) = Ae´5t. Here A is the only unknown of the particular solution. Note
the following, d

dtV
p
C(t) = ´5Ae´5t and d2

dt2
V p
C(t) = 25Ae´5t . (e repeated application of the differentiation

on the exponential function result in the same exponential exponential apart from scaling.) en substituting
the guess function into differential equation, we get A = 1

6 .

e complete solution is then

vcomplete(t) = vh(t) + vp(t)

= c1e
´t + c2e

´2t +
1

6
e´5t

e complete solution can be finalized by setting the c1 and c2 to meet the initial conditions. In this section, we
are only interested in the particular solution and do not pursue any further steps towards the complete solution.
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+
-
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+

-

+ VL
P(t) -

+
-
+
-

½ H

1F

+

-

+ VL
P(t) -

Figure 1.3.5: Finding the particular solution on the circuit diagram.

We would like to remind that the part of the complete solution that “remains” as t Ñ 8 is called the steady-state
solution. e part of the solution that decays to zero as t progresses is the transient solution. For this solution,
the only possible steady-state solution is the zero function. e whole solution decays to zero.

Case 2. Vs(t) = 1

By setting s = 0 in Vs(t) = est, we get Vs(t) = 1. Hence the important DC input case is also covered by the
family of the exponential inputs. e particular solution for the differential equation

(
D2 + 3D + 2

)
V p
C(t) =

2 is V p
C(t) =

1
2 .

is solution can be found by setting s = 0 in the general formula of V p
C(t) = 2

s2+3s+2
est. e complete

solution is then vcomplete(t) = c1e
´t + c2e

´2t + 1
2 . It is clear that f(t) =

1
2 is the steady-state solution for this

system. Hence for this case the particular is the steady-state solution.

Before proceeding with other examples, we would like to show a short-cut method for finding the particular
solution without expressing the differential equation. Figure 1.3.5 shows the original circuit with the guess of V p

C(t)

substituted for the capacitor voltage.
We apply the conventional time-domain description of each component to find its branch current and voltage. In

the circuit shown above KVL and KCL should be satisfied for the complete response, not for the particular response.
But our previous analysis results (cases 1 and 2) imply that the complete solution is in the form vcomplete(t) = c1e

´t+

c2e
´2t + Aest and in the circuit diagram presented in Figure 1.3.5, we only illustrate the particular components of

the solution. We know that there exists a homogeneous solution accompanying each particular solution at every
branch.

Since KVL and KCL should be satisfied for @t, it should be clear that the terms involving only est should satisfy
KVL and KCL equations on their own. (is is due to independence of functions est, e´t and e´2t.) Because of this
reason, we only indicate the particular solution on the circuit diagram shown in Figure 1.3.5. Finally writing a KVL
equation for the loop of voltage source, inductor and capacitor, we get an equation as follows:

est = V p
L (t) + V p

L (t)

=
A

2
s(s+ 3)est +Aest

=
A

2
(s2 + 3s+ 2)est

From the last equation, we get A = 2
s2+3s+2

and find the particular solution as before V p
C(t) = 2

s2+3s+2
est. is

method demonstrates the ease of approach to find the particular solution for exponential input family. We do not
even need to find the differential equation to find the particular solution!
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Case 3. Vs(t) = cos(5t)

We make the following guess for the particular solution V p
C(t) = A cos(5t) +B sin(5t). When we substitute

the particular solution into the differential equation of
(
D2 + 3D + 2

)
V p
C(t) = 2 cos(5t), we get:

(´25A+ 15B + 2A) cos(5t) + (´25B ´ 15A+ 2B) sin(5t) = 2 cos(5t)

To satisfy this equation for @t, we need to equate the coefficients of the independent functions (sine and cosine)
at right and left side of the equation. Once we do that, we get two equations for two unknowns of A and B.[

´23 15

´15 ´23

][
A

B

]
=

[
2

0

]

From the last equation, we can find A = ´46
232+152

, B = 30
232+152

and the particular solution is then V p
C(t) =

´46
232+152

cos(5t) + 30
232+152

sin(5t).

Now, we present a faster procedure. We choose to write Vs(t) = cos(5t) as Vs(t) = Retej5tu. en the
guess for the particular solution is the following V p

C(t) = RetAej5tu. We should substitute this guess into(
D2 + 3D + 2

)
V p
C(t) = 2Retej5tu and find A. (Note that A for this guess is a complex number different

from the earlier cases.)

We would like to mention the following simple fact on the derivative of the complex valued functions. Con-
sidering the application of fracddt to ej5t. e derivative operators on the real and imaginary parts of the
argument, that is d

dte
j5t = d

dt cos(5t) + j d
dt sin(5t). en the following relation d

dtRete
j5tu = Ret d

dte
j5tu is

true.

en substituting V p
C(t) = RetAej5tu for

(
D2 + 3D + 2

)
V p
C(t) = 2Retej5tu we get the following:

d2

dt2
RetAej5tu + 3

d

dt
RetAej5tu + 2RetAej5tu = 2Retej5tu

RetA d2

dt2
ej5tu + Ret3A d

dt
ej5tu + Ret2Aej5tu = Ret2ej5tu

Ret(j5)2A d2

dt2
ej5tu + Ret3(j5)A d

dt
ej5tu + Ret2Aej5tu = Ret2ej5tu

Ret(j5)2Aej5t + 3(j5)3Aej5t + 2Aej5tu = Ret2ej5tu
Retej5tA((j5)2 + 3(j5) + 2)u = Ret2ej5tu

e last equation is obviously satisfied with the choice of

A =
2

(j5)2 + 3(j5) + 2

=
2

´23 + j15

=
2(´23 ´ j15)

232 + 152

en the solution becomes
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V p
C(t) = RetAej5tu

= Re
"

2(´23 ´ j15)

232 + 152
ej5t

*

=
2

232 + 152
Re t(´23 ´ j15)(cos 5t+ j sin 5t)u

=
2

232 + 152
(´23 cos 5t+ 15 sin 5t)

which is exactly the same equation that we have got before. e method with the complex number is the basis
of AC circuit analysis which is to be examined later.

1.4 Stability

e concept of stability is fundamental for the study of the dynamical systems. In circuit theory, we introduce the
concepts of asymptotically stable, stable and unstable circuits. ese concepts are build on the behaviour of the
circuit due to initial conditions. After the study of these types of stability, we also introduce the BIBO (Bounded
Input Bounded Output) stability which is fundamental for the study linear systems with input.

We illustrate the stability concept with the following 2nd order example:(
D2 ´ (λ1 + λ2)D + λ1λ2

)
x(t) = f(t)

Here we have two natural frequencies at λ = tλ1, λ2u which can be complex numbers. e function f(t) is the
forcing term of the differential equation.

Asymptotical Stability
A system is called asymptotically stable if the response due to any initial condition decays to zero as t Ñ 8. For

example, xh(t) = c1e
´t+c2e

´2t goes to zero for any initial condition. erefore a system with such a homogeneous
solution or natural frequencies of -1 and -2 is an example of asymptotically stable systems. e condition for the
asymptotical stability can be expressed as follows:

Retλku ă 0 , @λk ô Asymptotically Stable

Stability
A system is called stable if the response to initial conditions remains bounded as t Ñ 8. (A function is called

bounded if |f(t)| ă M for a finite M .) For example, xh(t) = c1 + c2e
´2t is a stable system. In general, the

condition can be expressed as follows:

Retλku ď 0 , @λk ô Stable

Note that if the system has a purely imaginary natural frequency or have a natural frequency of λ = 0; then the
system is said to be stable but not asymptotically stable.

Unstable
A system is called unstable if the response to the initial condition is unbounded as t Ñ 8. An example for an

unbounded function can be xh(t) = c1 + c2e
2t. e general condition can be expressed as follows:

Retλku ą 0 , Dλk ô Unstable
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Asymptotically stable Stable UnstableAsymptotically stable Stable Unstable

Figure 1.4.1: Definitions of stability. e crosses show the position of natural frequencies on the complex plane.

Figure 1.4.1 illustrates the definitions of stability for a set of natural frequencies on the complex plane.
BIBO Stability
A system with input f(t)and output g(t) is stable if every bounded f(t) results in a bounded g(t). As the name

implies the bounded input results in a bounded output. Considering the exponential inputs, the complete solution
due to exponential inputs is as follows:

gcomplete(t) = c1e
λ1t + c2e

λ2t +Aest

Here est is the input function and λ1 and λ2 are the natural frequencies as before. We assume for now that
s ‰ tλ1, λ2u. Input being bounded means s ď 0, then

1. If either Retλ1u or Retλ2u is positive (an unstable system as shown in Figure 1.4.1), then the output is
unbounded. erefore the system is not BIBO stable.

2. If both Retλ1u and Retλ2u is negative (an asymptotically stable system as shown in Figure 1.4.1), then the
output is bounded. erefore the system is BIBO stable.

3. If either Retλ1u or Retλ2u is equal to zero (a stable system as shown in Figure 1.4.1), then the output is
unbounded either for s = λ1 or s = λ2. As an example assume that λ1 = ´5 and λ2 = 0, and the input
f(t) = 1 then the output becomes

gcomplete(t) = c1e
´5t + c2 +A+Bt

e response is unbounded. e system is not BIBO stable.



Chapter 2

AC Steady-State Power Calculations

In this section, we examine AC steady-state power calculations. e concepts introduced are the instantenous power,
average power, real power, reactive power, complex power, power factors. All of the introduced concepts are closely
related and the relation between different definitions is simple.

2.1 Instantaneous Power

Given a component with terminal voltage and current v(t) and i(t), the instantenous power is defined as

p(t) = v(t)i(t) (2.1.1)

Please note that, according passive sign convention v(t) and i(t) has specific polarity and direction respectively. In
electrical engineering literature, passive sign convention is adopted and therefore used throughout EE courses of the
department. e instantenous power (calculated using the definition of passive sign convention) can be interpretted

p(t) ą 0 ùñ component absorbs energy at time t (2.1.2)
p(t) ă 0 ùñ component delivers energy at time t (2.1.3)

It should be remembered the change of energy between times t1and t2 is the work done by the component.

W (t2, t1) =

ż t2

t1

p(t)dt (2.1.4)

e unit for the energy is Joules which can also be expressed as Watts x seconds. Students can examine the unit
of

şt2
t1
p(t)dt for the illustration of this equality. When t2 = t1+ ϵ where ϵ is arbitrarily smallW (t2, t1) =

şt2
t1
p(t)dt

becomesW (t1+ϵ, t1) = ϵp(t1) or p(t1) = W (t1+ϵ,t1)
ϵ . en the work done at an arbitrarily small amount of interval

divided by the length of the interval is the instantaneous power. Another, perhaps more familiar, definition for work
is the followingW (t) =

şt
´8

p(t1)dt1, then p(t) = d
dtW (t) , which is the slope ofW (t) or the rate of change of work

is the instantaneous power.

For a LTI resistor this definition gives,

23
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vR(t) = RiR(t) (2.1.5)
pR(t) = vR(t)iR(t) = R [iR(t)]

2
ą 0 (2.1.6)

WR(t2, t1) =

ż t2

t1

pR(t)dt = R

ż t2

t1

[iR(t
1)]2dt1 ą 0 @t1, t2 (2.1.7)

is shows that a LTI resistor (with R ą 0) always absorbs energy from other components. It can not deliver
energy to other components for @ iR(t). is is no surprise to us, since we know that the resistor converts electrical
energy to heat energy.

We have introduced capacitors and inductors as energy storage elements. In this section, we examine
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