Adaptive IIR Filtering

This paper presents an overview of several methods, filter
structures, and recursive algorithms used in adaptive IIR fil-
tering. Both the equation-error and output-error formula-
tions are described, although the paper focuses on the
adaptive algorithms and properties of the output-error con-
figuration. These parameter-update algorithms have the
same generic form and they are based on a prediction-error
performance criterion. A direct-form implementation of the
adaptive filters is emphasized, but alternative realizations
such as the parallel and lattice forms are briefly discussed.
Several important issues associated with adaptive IR filter-
ing, including stability monitoring, the SPR condition, and
convergence, are also addressed.

INTRODUCTION

VER THE LAST SEVERAL YEARS, adaptive infinite-

impulse-response (lIR) filtering has been an active
area of research [Jo84, Tr85], and it has been considered
for a variety of problems in signal processing and com-
munications. Examples of some important applications
include linear prediction [Hv76], adaptive notch filtering
[Fr84a, Ne85], adaptive differential pulse code modula-
tion (ADPCM) [Ja84], channel equalization [Pr83], echo
cancellation [Lo87], and adaptive array processing [Gc86].
In addition, several techniques used in adaptive IR filter-
ing have been derived from the fields of system identifi-
cation [As71, La74, Fr82, Lj83] and adaptive control [La79,
Gd84] where it is often assumed that the underlying
models have a pole-zero structure. Many of the known
convergence results for adaptive lIR algorithms require
that the filter be operating in a system identification con-
figuration such that the unknown system can be repre-
sented by a stable rational transfer function.

Fig. 1 illustrates the general structure and components
of an adaptive IIR filter with input x(n) and output y(n).
Observe that it is comprised of a time-varying filter, char-
acterized by the adjustable coefficients 6(n), and a recur-
sive algorithm that adjusts 6(n) so that y(n) approximates
some desired response d(n), which is determined by the
particular application {Wi85]. For example, Fig. 2 shows
the adaptive filter in a system identification configuration
where 6, are the unknown system parameters, and d(n)
is simply the measured output of the system, which usu-
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Figure 1. Adaptive IR Filter. An adaptive iR filter is
comprised of two basic components: a time-varying IR
filter with input x(n)-and output y(n, and a recursive al-
gorithm that adjusts the filter coefficients 6(n) to opti-
mize a performance criterion that is based on the
prediction error e(n). The goal of the adaptive filter is to
generate a suitable estimate y(n) of the desired re-
sponse d(n).

ally includes an additive noise process v(n). The objective
of the algorithm is to minimize a performance criterion
that is based on the prediction error e(n) (sometimes
called the estimation error), defined by e(n) = d(n) —
y(n). One commonly used criterion is the mean-square
error (MSE), £ = E[e*(n)], where E is statistical expecta-
tion; the corresponding coefficient recursions are called
stochastic gradient (SG) algorithms or recursive Gauss-
Newton (GN) algorithms. Another criterion is based on
the method of least squares, and the resulting algorithms
are known as recursive least squares (RLS).
Fundamentally, there have been two approaches to
adaptive IIR filtering that correspond to different formu-
lations of the prediction error; these are known as equa-
tion error and output error methods. In the equation-error
formulation [Mn73, Gc83], the feedback coefficients of
an lIR filter are updated in an all-zero, nonrecursive' form
which are then copied to a second filter implemented in
an all-pole form. This formulation is essentially a type of

'Pole-zero (1IR) and all-zero (FIR) filters are often denoted recursive
and nonrecursive, respectively. This description follows from the
structure of their difference equations, and it should not be con-
fused with the recursive nature of adaptive algorithms.
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Figure 2. System Identification Configuration. The adap-
tive IR filter is shown in a system identification configu-
ration where it is estimating the parameters 6, of some
unknown system H,(2), often called the "plant.” The sys-
tem dynamics are usua’lly more complicated than that de-
scribed by a difference equation, so the adaptive filter is
an approximate ‘model of the system characteristics.
The additive signal v(n) is often measurement noise, and
it is usually uncorrelated with the input x(n). This con-
figuration is an example of the autput-errar formulation
(Fig. 4), and in the control literature it is generally re-
{erred to as a model reference adaptive syst;em (MRAS)
La78l

adaptive FIR (finite-impulse-response) filtering, and the
corresponding algorithms have properties that are well
understood and predictable. Unfortunately, the equa-
tion-error approach can lead to biased estimates of the
coefficients 6,. The output-error formulation [La79, Jo84]
updates the feedback coefficients directly in a pole-zero,
recursive form and it does not generate biased estimates.
However, the adaptive algorithms can converge to a local
minimum of ¢ leading to an incorrect estimate of 6,, and
their convergence properties are not easily predicted. As
a result, there is a trade-off between converging to a bi-
ased estimate of the coefficients and converging to a
local minimum of £.

The primary advantage of an adaptive IIR filter is that it
can provide significantly better performance than an
adaptive FIR filter having the same number of coefficients.
This is a consequence of the output feedback which gen-
erates an infinite impulse response with only a finite
number of parameters. A desired response or, equiva-
lently, its frequency response can be approximated more
effectively by the output of a filter that has both poles
and zeros compared to one that has only zeros. For
example, an adaptive IIR filter with sufficient order can
exactly model an unknown pole-zero system (repre-
sented by 6,), whereas an adaptive FIR filter can only ap-
proximate such a system. This improved performance is
also obtained in other applications. Alternatively, to
achieve a specified level of performance, an IIR filter gen-
erally requires considerably fewer coefficients than the
corresponding FIR filter. Because of the potential savings
in computational complexity, it is anticipated that the
adaptive IR filter will replace the widely-used adaptive
FIR filter in many applications.

The goal of this paper is to provide a basic understand-
ing of the algorithms used to update the coefficients of
adaptive 1IR filters. Both the equation-error and output-
error formulations are initially examined; the paper then
focuses on output-error algorithms and their properties.
One such algorithm is the recursive prediction-error (RPE)
algorithm which is a gradient-descent approach that is
based on an instantaneous estimate of ¢. An approxima-
tion to the gradient leads to a simpler aigorithm known
as the pseudolinear regression (PLR) algorithm. A sto-
chastic convergence analysis of these algorithms, which
involves the study of an associated ODE (ordinary differ-
ential equation), is then outlined. Important issues re-
lated to convergence, such as stability monitoring of the
poles and the SPR (strictly positive real) condition, are
also discussed. As we shall see, the properties of an
adaptive IIR filter are considerably more complex than
those of the conventional adaptive FIR filter, and it is more
difficult to predict the behavior of an adaptive IR algo-
rithm in a general way.

Most adaptive IR algorithms have been derived for a
direct-form implementation of the filter coefficients.
However, some disadvantages of the direct form such as
finite-precision effects and the complexity of stability
monitoring have led to the development of algorithms
for alternative structures. The computational complexity
and convergence properties of adaptive algorithms can
vary widely depending on the filter realization used. This
paper concentrates on direct-form implementations, but
it also briefly describes the adaptive algorithms designed
for parallel- and lattice-form realizations.

EQUATION-ERROR AND OUTPUT-ERROR
FORMULATIONS

Equation-error formulation

Consider the equation-error adaptive IIR filter shown
in Fig. 3 which is characterized by the nonrecursive differ-
ence equation:

N-1 M-1
yeln) = Ea (mdn —m)+ 3 b,(mxtn —m), (1)

m=0
where {a,(n), b, (M} are the adjustable coefficients and
the subscript e is used to distinguish this output from
that of the output-error formulation. Observe that (1) is a
two-input, single-output filter that depends on delayed
samples of the input x(n — m), m =0,..., M — 1, and of
the desired response d(n —m), m=1, ..., N - 1. It
does not depend on delayed samples of the output and,
therefore, the filter does not have feedback; the output
is clearly a linear function of the coefficients. This prop-
erty greatly simplifies the derivation of gradient-based al-
gorithms. Since d(n) and x(n) are not functions of the
coefficients, the derivative of y.(n) with respect to the co-

efficients is nonrecursive and is easy to compute.

This expression can be rewritten in a more convenient

form using delay-operator notation as follows:
ye(n) = A(n, q)d(n) + B(n, q)x(n), @
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Figure 3. Equation-Error Formulation. The equation-
error formulation filters both the input signal x(n} and
the delayed desired response din — 1) to generate an
estimate of d(n). it essentially operates as a two-input,
single-output adaptive FIR filter such that the polynomial
associated with the pales, 1 — Aln, g), is adapted in an
ali-zero form. After each update of the weights, the in-

verse of 1 — Aln, g) is copied to an all-pole filter which is
in cascade with B(n, g). The impulse response from x(n)
to y,(n) is infinite, and the cascaded filters have the same
form as that of the output-errar formulation (Fig. 4).
However, the converged coefficients obtained with this
approach are generally different from those generated
by the output-error formulation,

where the polynomials in g represent time-varying filters
and are defined by

z

=1 M-1

am(n)g™™ and B(n,q) = X bn(Mq™.
1 m=0
3

Note that the lower limit of the sum for A(n, q) begins
with m = 1; consequently, A(n, q)d(n) depends only on
delayed samples of d. The argument n emphasizes the
time dependence of the coefficients and g~ is the delay
operator such that g™"x(n) = x(n — m). These functions
of g operate on time signals only from the left as in 2.
By replacing g with the complex variable z, the expres-
sions in (3) become z-transforms (transfer functions),
assuming that the coefficients are fixed (independent of
time), i.e., a,(n)— a, and b,(n)— b,, so that A(n, g)— A(2)
and B(n, g)— B{(2). This form can be used to find the zeros
of the adaptive filter at any instant of time. For example,
after each update of the coefficients and before the coef-
ficients {a,,(n)} are copied to the inverse filter (Fig. 3), it
will be necessary to monitor the zeros of 1 — A(2) to de-
termine if its inverse is a stable system. If it is not stable,
then some method of projecting the roots inside the unit
circle will be necessary before the inverse filter is formed.

The equation error is given by e.(n) = d(n) = y.(n). It
is called this because it is generated by subtracting two
difference equations: [1 — A(n, @)1d(n) and B(n, q)x(n).
Note that e.(n) is also a linear function of the coeffi-
cients; as a result, the mean-square-equation error
(MSEE) is a quadratic function with a single global mini-
mum (provided the data correlation matrix is nonsingular)
and no local minima [Wi85]. In many ways, the perfor-

A(n,q) =

m

2In the literature, functions of the delay operator are often written
as A(n, ¢7"). To simplify the notation and to make it consistent with
the usual definition of the z-transform, we will use the representa-
tions defined in (3).
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mance of an equation-error adaptive lIR filter is like that
of an adaptive FIR filter (where A(n, q) = 0). They have
similar adaptive algorithms with similar convergence
properties; the convergence rate and stability of the
coefficient updates are usually determined by the eigen-
values of the Hessian matrix [Wi76]. The main difference
is that the equation-error adaptive IIR filter can operate
as a pole-zero model by copying and inverting the poly-
nomial 1 — A(n, g). The adaptive FIR filter is strictly an all-
zero model since A(n,q) = 0.

Equation (1) can also be compactly written as the inner
product

ye(n) = 6" (n)e.(n), )

where the coefficient vector # and the signal vector ¢,
each have length M + N — 1 and are defined as

8(n) = [as(n), ..., an«(n), bo(n), ..., bua(M}  (53)
¢e(my=[dn—1),...,dln - N+1),
x(n), ..., x(n — M+ 1] (5b)

Observe that (4) has the form of a linear regression,
which is commonly used in statistics [Mo77], where 6
corresponds to the estimated parameters and ¢, is the re-
gression vector (containing the data). The regressor is
clearly independent of the coefficients since the data
d(n) and x(n) are not functions of A(n, q) or B(n, q). Many
of the techniques and-algorithms used in parametric sta-
tistical inference can be used here to find the optimal set
of parameters. Some examples of these estimation meth-
ods are maximum likelihood [Mn87], maximum a posteriori
[Mn871, least squares [Ha86], and mean-square error
[Wi85]. The RLS (recursive-least-squares) algorithm [Ha86]
is one approach that recursively minimizes a least-squares
criterion; the LMS (least-mean-square) algorithm [Wi76]
is a recursive gradient-descent method that searches for
the minimum of the MSEE.
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Figure 4. ' OQutput-Error Formulation. The output-error
formulation filters only the input x{n) to generate an esti-
mate of d{n), Unlike the equation-error formulation, the
pole-polynomial 1 ~ Aln, g} is adapted directly in an liR
filter form. In a sense, this formulation is a "natural” gen-
eralization of the adaptive FIR filter where Aln, @) = 0.

Output-error formulation

The output-error adaptive IIR filter shown in Fig. 4 is
implemented in direct form and is characterized by the
following recursive difference equation (the subscript o
denotes the output-error approach):

N—-1

ol) = 3 an(nlyaln = m) + 3 by(nixin — m),

m=0

C)

which depends on past output samples y,(n — m),
m=1,..., N— 1. This output feedback significantly in-
fluences the form of the adaptive algorithm, adding
greater complexity compared to that of the equation-error
approach. Analogous to (2) and (4), this expression can
be rewritten as the filter

_ [ _Bn,q) ‘
Yol(n) = (—1 — A(n,q)>X(n), %
and as the inner product
Yoln) = 67(n)¢,(n), ®

where the coefficient vector 6 is given in (5a) and the
signal vector in this case is

¢O(n) = [YU(n - 1)/ ey yo(n - N+ 1);
x(n), ..., xn —M+ 1DT. (9)

The output y,(n) is clearly a nonlinear function of 8 be-
cause the delayed output signals y,(n — k) of ¢, depend
on previous coefficient values [i.e., they depend on
A(n — k,q) and B(n — k,g)].’ Equation (8) is not a linear
regression, but it has the same form as (4) and is often re-
ferred to as a pseudolinear regression [Lj83]. Similar sta-
tistical techniques and algorithms can be applied here to
solve for the optimal coefficients, but it can be shown that
the solution may be suboptimal unless a certain transfer
function is strictly positive real (SPR) [La79]. To overcome

3This dependence on the coefficients is often emphasized by writ-
ing the signal vector as ¢,(n, 6). To keep the notation simple in this
paper, we do not include 6 in the argument of ¢,; the subscript o
essentially serves the same purpose.

this SPR condition, additional processing (filtering) of the
regression vector or of the output error is generally nec-
essary, as will be shown later.

The output error is given by e,(n) = d(n) — y,(n), and
it is called this simply because it is generated by subtract-
ing the output in (7) from d(n). Clearly, e,(n) is also a
nonlinear function of 8; the mean-square-output error
(MSOE) is, therefore, not a quadratic function and it can
have multiple local minima [St81]. Adaptive algorithms
that are based on gradient-search methods could con-
verge to one of these local solutions, resulting in subop-
timal performance and inaccurate estimates of 6,.

Coefficient bias and local minima

As mentioned above, algorithms based on the equation-
error formulation may converge to a result that is biased
away from the optimal (Wiener) solution. In a system
identification application, this corresponds to incorrect
estimates of 6. such that £[6(n)] = 6« + bias in the limit
as n —>=. It can be shown that this bias will be zero if
either the additive noise signal v(n) = 0 or A(n,q) =
0 (corresponding to an FIR filter). Note that the equation
error can be expressed as a filtered version of the output
error (compare Figs. 3 and 4): e.(n) = [1 — A(n, g)le,(n).
The equation-error and output-error formulations are ob-
viously identical if A(n,q) = 0, and the amount of bias is
directly influenced by the power of v(n) because v(n) is
also filtered by 1 — A(n, q). In effect, the adaptive filter
is attempting to minimize the noise power that reaches
e.(n), in addition to identifying the system poles. These
conflicting goals are the cause of the bias. Although
equation-error adaptive IIR filters have rapid conver-
gence properties, their performance may be completely
unsatisfactory if the bias becomes significant. An ex-
ample of this is shown in Fig. 5.

Adaptive algorithms based on the output-error formu-
lation are generally more complicated than those based
on the equation error, but they do not lead to biased so-
lutions. However, they may converge to a local minimum
of the MSOE surface [St81]. An example of a local mini-
mum for a first-order adaptive filter is shown in Fig. 6.
Sufficient conditions for which there are no local minima
have been investigated for the system identification con-
figuration [S075, S082, Na88b]. It can be shown that none
exist if: (1) the adaptive filter transfer function has suffi-
cient order (poles and zeros) to exactly mode! the un-
known system (the order of the adaptive filter can be
greater than that of the unknown system), (2) the input
x(n) is a white-noise sequence, and (3) the order of the
adaptive filter numerator exceeds that of the unknown
system denominator. For configurations other than sys-
tem identification, there may be a similar set of condi-
tions but there are relatively few analytical results. It
should be mentioned that noise in the adaptive filter,
such as that introduced by the gradient estimate, may in-
duce the adaptive algorithm to escape from a local mini-
mum and then possibly converge to the global minimum.
It is not clear how often this actually occurs in practice.
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Figure 5. Coefficient Bias. These contours of constant
MSEE (normalized to have a maximum value of 1) illus-
trate the coefficient bias that can occur when using the
equation-error formulation. A system identification con-
figuration was examined with the following first-order
system:

___B
Ha@ = 5=,
where a = 8 = 0.5. The adaptive filter was also first-
order such that y,(n) = ag~'d(n) + bx(n). The input x(n)
and additive noise v(n) were uncorrelated, white se-
quences with a signal-to-noise ratio (SNR = ¢%/0%) of (a)
SNR = 10 and (b) SNR = 1. It is straightforward to
show that the equation-error estimates of the system co-
efficients are a = s+ « and b = 8, where the scale factor

o= B°SNR
1= of + B°SNR’

In this case, only a is biased; the amount of bias, defined
by a = a + bias, is given by
. -(1 - Ao
oS = T+ PSR

As the SNR decreases the bias increases (s — 0), shift-
ing the contours away from the optimal solution of a =
b = 0.5. The noise power contained in y.(n) is given by
(1 + a®o?. Clearly, this is minimized when a = 0, a re-
sult that is obtained in the limit as SNR — 0. This illus-
trates the trade-off between minimizing the noise power
that is contained in e,(n), and correctly estimating the
unknown' coefficient «. Observe that the contours have
the form of an ellipse; the MSEE surface is a paraboloid
with a single (biased) global minimum and no local minima.

Global Minimum
a=0906 b=-0311
MSOE = 0.277

Local Minimum

a=-0519 b=0114

MSOE = 0.976

Figure 6. Local Minima. The above contours of constant
MSOE were generated from a system identification con-
figuration where the unknown system was second-order:

Bo + Bz

Ha(2) = 1 — 2™ — a2’

with oy = 1.1314, ax = —0.25, B; = 0.05, gy =
and the adaptive filter was first-order such that

Vo) = (—1'—_9?) x(n).

The input signal x(n) was a white sequence with variance
o2 = 1, and the additive noise v(m = O. It can be shown
that [Jo77]

-0.4,

2
MSOE = o — 2bH,(a™") + 1—f?,

where ¢f is the variance of the desired response d(n}, and
H,(2) has been evaluated at z = a~'. Observe that this
expression is a highly nonlinear function of the feedback
coefficient a. As a result, the MSOE surface generally is
not a paraboloid and it can have local minima (as shown in
the figure). If the coefficients are initialized near a local
minimum, then the adaptive |IR algorithm might converge
to this suboptimal solution (see [Jo771.

8
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The initial conditions for 6(n) can also influence to which
minimum the algorithm will converge; it is obviously
desirable that 8(0) be near or lie on a trajectory to the
global minimum.

Clearly, there is a trade-off between the two error for-
mulations. On the one hand, the equation error is a lin-
ear function of the coefficients so that the MSEE surface
has only a global minimum and no local minima. The
adaptive algorithms generally have fast convergence, but
they converge to a biased solution since there is always
some additive noise. On the other hand, the output error
is a nonlinear function of the coefficients and the MSOE
surface can have multiple local minima. The correspond-
ing adaptive algorithms usually converge more slowly
and they may converge to a local minimum. One might
argue, however, that the output-error formulation is the
“correct” approach because the adaptive filter is operat-
ing only on x(n) such that the output y(n) estimates the
desired response d(n). In contrast, the equation-error
approach uses past values of the desired response as well
as x(n) to estimate d(n).

Alternative error formulations

There has also been a significant amount of research
on other error formulations that are based on more gen-
eral system models such as the ARMAX and Box-Jenkins
models [Lj87]. These are often used in system identifica-
tion applications, and they provide a more complete
description of the additive noise process v(n). This paper
is primarily concerned with models that make sense in
the framework of adaptive filtering where there may not
be an underlying system, such as in the adaptive notch
filter. The equation-error and output-error formulations
are two special cases of these more general models that
are useful for adaptive filtering purposes. Further discus-
sion of other model formulations can be found in [Lj83]
and [Lj87].

GENERAL FORM OF THE ADAPTIVE ALGORITHMS

All of the adaptive IR algorithms discussed in this pa-
per have the following generic form which is often called
the recursive Gauss-Newton algorithm [Lj83]:

8(n + 1) = 6(n) + aR7'(n + Np(n)e;(n), (10)

where ¢4n) and e;(n) are filtered versions of ¢(n) and
e(n), respectively, according to ¢.(n) = F(n,q)d(n) and
e«(n) = G(n, g)e(n). The filtered regression (signal) vector
is often called the information vector, and it can be
shown that Eld;(n)¢[(n)] is the Fisher information matrix
used in statistical inference [Lh83]. The information ma-
trix determines the Cramer-Rao lower bound* {Lj83,
Fr84b] for the coefficients in (10). Note that ¢ and e are
derived from either the equation-error (¢., €.) or output-
error (¢,, €,) formulations. The time-varying filters F(n, q)

*The Cramer-Rao lower bound is the minimum achievable covari-
ance of 8(n) at convergence; i.e., it determines the lower limit of
E[6(n) — 6,110(n) — 8,]” assuming that 6(n) is unbiased: E[6(n] = 4,.
5The effective memory is defined as r = 1/(1 — \).

and G(n, q) are defined in a manner similar to B(n, q) in
(3). The scalar (positive) step size a controls the algorithm
convergence rate and R(n) is an estimate of the Hessian
matrix updated according to

R(n + 1) = AR(n) + ad(n)pi(n), ()

where A = 1 — a is the so-called forgetting factor. Typi-
cally, A would have a value between 0.9 and 0.99, corre-
sponding to an effective memory’® between 10 samples
and 100 samples, respectively. Since computing the in-
verse of R is computationally expensive, R™" is generally
updated directly using the matrix inversion lemma [Ka80].
In this case we have

- o R (MR (n)
R'n+1)= N (R (n) Na+ ¢I(n)R1(n)<bf(n)) .
(12)

The (estimated) Hessian matrix is often incorporated to
improve the algorithm convergence rate but at the ex-
pense of an increase in the computational complexity.
Otherwise, the update in (11) or (12) is not performed
and R(n + 1) in (10) is set equal to /, the identity matrix.
This form, often referred to as a stochastic gradient algo-
rithm [Ha86], generally has a slower convergence. How-
ever, its complexity is much less than that of (10)—on the
order of M + N operations compared to order (M + N).

The algorithm is usually initialized with 6(0) = 0 and
R(0) = 8/ where 0 is a vector of zeros and & is a small
positive scalar. If some a priori information is known in a
particular application, it may be desirable to initialize the
parameters to some other appropriate values. In order
for (10) to converge, it is important that R always be posi-
tive definite (so that it is invertible), and that the poles of
1 — A(z) always lie inside the unit circle (so that the filter
is stable). The above initial conditions satisfy these two
requirements, but it may be necessary to monitor 6 and R
after each update of the algorithm. This depends on the
filters chosen for F and G.

For the equation-error formulation, it can easily be
shown that ¢;(n) = ¢.(n) and e«n) = e.(n) so that
F(n,q) = G(n,q) = 1; i.e., there is no filtering of the re-
gressor or of the equation error. The corresponding algo-
rithm is known as the normalized-gain RLS algorithm
[Lj87], and if R = [ it is simply the LMS algorithm. The
properties of these algorithms have been studied exten-
sively in the context of adaptive FIR filtering (see, for
example, [Wi76, Hr81, Ha86]), and they extend in a
straightforward manner to the equation-error formula-
tion. A convergence analysis of the equation-error algo-
rithm can easily be done by assuming that ¢. and ¢ are
independent (which is often done for the LMS algorithm
[Wi851°). This assumption cannot be used, however, for
the output-error algorithms described later in this paper
(where F and G may not be equal to 1). In that case ¢,

‘Although the independence assumption is not strictly valid, it
is “approximately” correct for slow adaptation (small «), and it
yields results that accurately predict the convergence properties of
the LMS algorithm.
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and 6 are not independent because the regressor con-
tains the filter output y,, which is a function of the coeffi-
cients. Note that the correlation matrix E[¢.(n)d1(n)] of
the equation-error formulation is independent of time
when x(n) and d(n) are wide-sense stationary random
processes. It is this property that greatly simplifies the
convergence analysis of equation-error adaptive 1IR filters.
On the other hand, the correlation matrix E[d,(n)d o(n)]
of the output-error formulation is not independent of
time—even for a stationary input signal because ¢,
depends on the time-varying filter coefficients. This
property complicates the convergence analysis of output-
error adaptive IIR filters.

Because the equation-error formulation is closely
related to adaptive FIR filtering, it will not be discussed
further in this paper. A more thorough discussion of
equation-error algorithms and their properties can be
found in [Mn73, Gc83, Lj83]. A recently developed algo-
rithm that exhibits properties of both the equation-error
and output-error formulations is described in [Fa86]. The
rest of the paper presents some adaptive algorithms for
the output-error formulation.

GRADIENT-BASED METHODS
Recursive prediction error algorithm

The recursive prediction error (RPE) adaptive algorithm
[Lj83] adjusts the filter coefficients to minimize the MSOE
cost function ¢ = E[e2(n)] where e,(n) is the output error.
Because ¢ is generally unknown or the signals are nonsta-
tionary, the algorithm is designed to minimize at each in-
stant of time an instantaneous estimate of ¢ given by
{n) = el(n). In effect, we are using the current sample of
the output error as an estimate of the ensemble. Clearly,
this approximation will lead to noisy estimates of the filter
parameters, but it can be shown that they are unbiased
so that the average convergence properties are compa-
rable to those that would be observed if ¢ was available.

The RPE algorithm updates the coefficient vector 6(n)

along the (negative) gradient of ¢(n), defined as’
af(n) _ _
Vol(n) = 200 € (MV4eo(n) = —e.(nNVyy,(n)

(13)

where the gradient V,y,(n) is the following column
vector:

Tayl) = [ayo(n), 3ys(n) 3y, (n)

" dan_4(n) " aby(n)’

ay.(n) |
da,(n)

' dby_+(n)
(14)

The last expression in (13) follows from the definition of
the output error and from the fact that d(n) is indepen-
dent of the coefficients. Observe from (8) that V,y,(n) =

(N, (n)]. If ¢, was independent of 6, then the gradi-
ent would simply be V,y,(n) = ¢,(n) [which is analogous

’In order to obtain the convenient form in (13), a factor of one-half
has been included in the definition of {(n).
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to the gradient in the equation-error formulation, i.e.,
Voye(n) = ¢.(n)]. However, ¢, contains delayed samples
of y, which depend on @ according to (6). As a result, the
gradient expression is considerably more complicated, as
we now show; the simplified form, V,y,(n) = ¢,(n), is
only an approximation and the corresponding algorithm
is known as a pseudolinear regression algorithm (which
is discussed in the next section). Taking the derivative of
both sides of (6) with respect to a,(n) and noting that
bn(n) and x(n — m) are independent of a,(n), we obtain

dy,(n) _ B 1S 3Yo(n — m)
da,(n) Yoln = k) + m% an(n) da,(n)
(15a)
Similarly, the derivative with respect to by (n) is
ayo(n) _ N ay.(n — m)
) x(n — k) + Z] an(n) TED
(15b)

The partial derivatives on the right-hand side of (15) arise
because the filter in (6) has feedback, whereby previous
output samples depend on previous coefficient values
which, in turn, are related to the current coefficient values
via successive updates of the algorithm in (10). Observe
that these derivatives are with respect to the present val-
ues of a; and b, so that the expressions are not recursive
and cannot be expressed in the form of a filter using the
delay-operator notation. However, if the step size «a is
chosen sufficiently small so that the coefficients adapt
slowly, then the following approximation can be made:
on) =6n—1) = ,=0(n — N+ 1) [Jo84]. This is a
reasonable assumption in many applications, particularly
when N is small; in cases where this assumption is not
valid only a small degradation in the performance of the
RPE algorithm is observed in practice. Consequently, we
can replace (15) by

dyo(n) ps aya(n - m)
da,(n) = Yol ,,,Z dax(n — m)

= ( ) .(n — k) (16a)

and
dyo(n) B pe ay,(n — m)
N R ,%1aM(n)abk(n —m)
1
= (m)x(n - k). (16b)

These derivatives are now recursive in the partial deriva-
tives since terms in the middle expression correspond to
delayed versions of the left-hand side. This observation
leads to the delay-operator form in the right-hand expres-
sion where each component of the signal vector ¢, is fil-
tered by the inverse pole-polynomial of the adaptive
filter—a result that is characteristic of adaptive IIR filter-
ing. This additional processing does not arise in adaptive
FIR filtering or the equation-error formulation because



there is no feedback.
We now see that F(n,q) = 1/[1 ~ A(n,g)land G(n,q) =
1; the complete algorithm is thus given by

-1 1
#(n + 1) = 6(n) + aR7'(n + 1)(—————1 — A(n/q))cbo(n)eo(n),

a7

where the all-pole filter F operates on each component
of the signal-vector ¢,, as shown in Fig. 7. Observe that
there are M + N — 1 identical filters operating in parallel
to compute the gradient components. They are generated
by copying the feedback coefficients from the adaptive
filter after each update of 6. These filters differ only in that
they are driven by different input signals, corresponding
to delayed samples of the adaptive filter input and output.
This algorithm, with R = I, was first derived in the context
of adaptive filters by White [Wh75]. Similar algorithms
were derived earlier for other system identification mod-
els, such as the recursive maximum likelihood (RML) al-
gorithm developed by Astrém and Soderstrom [As74].

Simplified RPE algorithm

It is clear that computing the components of ¢; con-
tributes a significant amount of complexity to the RPE al-
gorithm, and that a large amount of storage is needed for
past values of them. Fortunately, the coefficient approxi-
mation described previously allows a considerable sim-
plification in the calculation of ¢; as shown in Fig. 8. To
see this, first define
dy,(n)

da(n)

ay,(n)
aby(n)’

yin —1) and ‘x,(n) = (18)
which are the initial gradient terms in (16a) and (16b) for
k =1 and k = 0, respectively. Then, for the other com-

ponents of ¢, the approximation permits us to substitute

dyo(n) _ ay,(n)
da(n) abi(n)

fork=2,...,N—1and k=1,...,M — 1, respectively.
That is, each component of the gradient is simply a de-
layed version of one of the two initial components de-
fined in (18). As a result, y,(n — k) and x,(n — k) depend

yi(n — k) and = x{n — k) (19)

Weights are copied from
the adaptive filter

Figure 7. Full Gradient. Each component of the gradi-
ent vector ¢+(n) is obtained by filtering either x(n — K or
y(n — k) by the inverse of the pole polynomial 1 — Aln, g).
For example, the first gradient element, denoted by
dr nolN), corresponds to the derivative of y,(n) with re-

x(n) B(n.q) Yo
1-A(n,q) -
\ 4 1 7 4 2-1
N 1 0, () . 1 I
1-A(n,q) ° 1-A(n,q) !
o (-}
o o
R Gradient o Gradient
components components
for bm(n) for am(n)
2" 2"
1 o, (M 1 %, (M
— —p M- _ }—#% N-1
x(n-M+1) 1-A(n.q) y,(n-N+1) 1-A(n.q)

spect to the feedforward coefficient by(n); it is generated
by filtering x{n) with the inverse polynomial. Similarly,
¢r.5,(mM is computed by filtering y,{n — 1). Observe that
the output y,(n) is first delayed before generating the
gradient components for the feedback coefficients.

11
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x(n) B(n,q) 3’(“)
1-A(n,q) -
A \Z3
> ! x,(n) > !
1-A(n,q) l . 1-A(n,q) I y,(n-1)
-] (-]
o o
Weights are copied ° Simplified ° Simplified
from the adaptive filter gradient gradient
2! components 21 components
for bm(n) for am(n)
x'(n-M+1) y'(n-N+1)
Figure 8. Simplified Gradient. The simplified gradient is and
obtained by observing that the gradient components in
Fig. 7 differ only in that the input signals of the inverse bra(n) ~ _ Y-k bran— K = yin - K
filters are delayed versions of either x(n) or y,(n). This h 1-A(n-kaq o
suggests that the gradient components might approxi- k=1,....N—-1.
mately be delayed versions of each other. If the coeffi- o ] i
cients are slowly varying, we can substitute Aln — k, ¢}  This is equivalent to the simplified structure shown above
for A(n, ), where the argument n — k matches that where only two inverse filters are needed to compute all
of the inverse filter input signal [either x(n — k) or Of the gradient components.
vo(n — K. As a result,
x(n — k) -
brp () = TCAn-ka brooln — k) = x(n — k)
k=0,... M-1

on the delayed coefficients A(n — k, q) instead of the
most recent ones A(n, g) (compare Figs. 7 and 8). We can
therefore replace the previous information vector with

&(n) = [yn —1),...,ydn = N + 1),

xn), ..., x{n =M+ DT, (20)

which requires only two filters [Hv80]. In effect, the delay
lines used to generate the components of ¢, in Fig. 7
have been moved “through” the pole-polynomial filters
so that only one such filter is needed for each delay line.
This simplification introduces essentially no degradation
in performance and is generally used in practice. The re-
sulting simplified RPE algorithm is thus (10) coupled with
(18) and (20), which clearly requires less storage and com-
putation than using (17). For convenience, the complete
algorithm with initial conditions is summarized in Table 1.
A generalization of this algorithm for complex coeffi-
cients is derived in [Sh86].

Stability monitoring

One of the major drawbacks associated with the RPE al-
gorithm is that the pole polynomial of the filter, which is
also used to compute the gradient components, may be-
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come unstable during adaptation. This can occur if one
or more poles of 1 — A(z) accidentally updates outside
the unit circle and remains there for a significant length
of time. As a result, the output can grow without bound
and it is difficult for the algorithm to overcome this prob-
lem unless there is some form of stability monitoring. Be-
cause of the noisy gradient estimate (i.e., {(n) is used
instead of ), it is not unlikely that the poles will update
outside the unit circle, particularly if the application re-
quires that they be near the unit circle. Fig. 9 shows the
stable region, called the stability triangle, for the feed-
back coefficients of a second-order adaptive filter.

One of the simplest tests of stability is to check after
each update of the algorithm that the sum of |a,(n)| is
less than 1 [Hv76]. All unstable updates will be detected
by this approach, but it can be shown that the coefficient
space is severely restricted (see Fig. 9), especially for
large N; i.e., the test will indicate that a polynomial is un-
stable when in fact it is not. Jury’s test [Jub4] (also called
the modified Schur-Cohn test [Tt76]) is a somewhat more
complex method of determining whether or not a poly-
nomial has minimum phase (all roots lie inside the unit
circle), and it does not restrict the coefficient space. This
test does not reveal which poles are unstable; to obtain




TABLE 1
RPE Algorithm with Simplified Gradient
INITIALIZATION:
an(0) = b,(0) =0
x(n=m) =y,(n—m)=x{n—m)=yin —m)=0

R(0) = &/

VECTOR DEFINITIONS:
6(n) = [a:(n), ..., an-1(n), by(n), ..., by-A(m)Y

d)ﬂ(n) = [YO(n - 1)7-"1y0(n - N+ 1)/
x(n),...,x(n — M+ 1]

o) =[yln—="1,...,ys(n - N+ 1,
xAn), ..., x{n — M+ 1]

FOR EACH NEW INPUT x(n), d(n); n = 0:

x(n) = x(n) + Ni an(mxdn — m)

m=1

Yoln) = 0'(n)eb,(n)

N-1
yim) = y,(n) + 2 a,(n)yn — m)

m=1

e(m) = d(n) — y,(n)

Aa + ¢/(mMR ™ (m(n
0n + 1) = 0(n) + aR~'(n + 1)d(n)e,(n)

B} N
R7'n + 1) =%(R"(n) _ R/ R (n)))

1 Stability Triangle

TN

Region of Sufficient
Stability Test |a1 f+lal <1

Figure 9. Stability Triangle. The stable region for the
second-order IR filter

1
H@ 1 —az' - azz‘s

is shown as a function of the feedback coefficients a, and
a,. This region is called the stability triangle, and it can
easily be shown that the poles lie inside the unit circle if
T+a,—a8>01-a8 —a>0and1 +a;>0. This
is a simple stability test that can be applied to second-
order adaptive !R filters, such as the second-aorder sec-
tions of the parallel form shown in Fig. 12. 1t is also easy
to determine the pole locations exactly, and to project
any unstable roots back inside the unit circle to some ap-
propriate location. The region corresponding to the suffi-
cient stability test, |a,] + |az| < 1,.is also shown.
Observe that it is significantly smaller-than the entire
stable region and, in particular, that it excludes the
lower right corner of the triangle which corresponds to
the region near z = 1 on the z-plane. Note that in the re-
gion below the dashed curve the poies form a complex
conjugate pair.

this information the polynomial must be factored—a
computationally expensive operation for N > 2. If this
were done, any unstable poles could easily be projected
back inside the stable region to some appropriate loca-
tion. In most cases, however, factorization is not practi-
cal, so instead the previous coefficient update is usually
ignored, i.e., 8(n + 1) = 6(n). Of course, this approach
requires much less complexity than factoring the polyno-
mial, but it is not a robust method because the algorithm
can lock up in this state for an indefinite period of time
[Jo84], thereby degrading the convergence rate and the
overall performance.

Other approaches to stability monitoring have been
suggested, but they are either computationally expensive
or nonrobust. The problem is still an ongoing area of re-
search. A recent method is based on Kharitonov’s theo-
rem [Br88] which requires that four related polynomials
be tested to ascertain the stability of the pole polynomial.
The complexity of this method is relatively high, and it
has been shown that it also restricts the size of the coeffi-
cient space. Other recent work has shown that alterna-
tive realizations such as the parallel and lattice forms can
easily overcome potential instabilities. The parallel form
is comprised of second-order sections which are trivial to

factor, and the lattice form requires only that each reflec-
tion coefficient have a magnitude less than 1.

Finally, it should be noted that when the poles lie in-
side the unit circle, the filter is guaranteed to be stable
only when it is linear and time invariant. For time-varying
systems such as the adaptive IIR filter, it is not sufficient
to monitor the poles at discrete time intervals; even if the
poles always lie inside the unit circle it is possible for
the system to become unstable for certain “pathological”
input signals [Vi78]. This potential problem is often ig-
nored in practice and is usually not observed in com-
puter simulations.

APPROXIMATE GRADIENT METHODS
Pseudolinear regression algorithm

The RPE algorithm can be simplified further by using an
approximate gradient such that F(n,q) = G(n,q) = 1 and
(17) becomes

on + 1) =06(n) + aR7'(n + N, (nN)e,(n). 1)

There is no filtering of the signal vector ¢, and the gradient
is approximated by V,y,(n) = ¢,(n). This approach is
known as a pseudolinear regression (PLR) algorithm be-
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cause the adaptive filter output signal is a nonlinear func-
tion of the coefficients [see (7)], yet the algorithm
(gradient) ignores the fact that the signal (regression) vec-
tor depends on the coefficients (i.e., the product rule of
differentiation was not applied when calculating the gra-
dient, as in the previous section). Observe that the PLR
algorithm is similar in form to the RLS algorithm used in
the equation-error formulation except that (¢,, e,) are
substituted for (¢., e.). The computational complexity
and storage requirements of the PLR algorithm are com-
parable to that of the RLS algorithm, and they are clearly
less than that of the RPE algorithm.

The adaptive algorithm in (21) (with R = ) was first
derived for adaptive filters by Feintuch [Fe76] and for sys-
tem identification applications by Landau [La76]. Al-
though satisfactory convergence results have been
achieved for specific cases [Fe76], it was shown later that
(21) may not converge to a minimum (local or global) of
the MSOE surface unless the denominator polynomial as-
sociated with 6,, denoted by 1 — A,(q), satisfies a strictly
positive real (SPR) condition. If this condition (defined
below) is not satisfied, the algorithm may converge to an
arbitrary point on the MSOE surface and the overall per-
formance may be unacceptable. This has been demon-
strated in a system identification configuration where the
order of the adaptive filter was less than that of the un-
known system [jo77].

Unlike the RPE algorithm, stability monitoring is not
needed here [Lj83]. In effect, the PLR algorithm has a self-
stabilizing feature whereby unstable poles have a ten-
dency to migrate back into the stable region. It has been
suggested that when RPE updates become unstable, PLR
updates could be done instead [i.e., set F = 1in (17)] un-
til the filter is again stable. This technique may result in
improved performance compared to that obtained when
unstable RPE updates are simply skipped.

Filtered-error algorithm

To overcome the convergence problem associated with
the SPR condition, the output error in (21) can be filtered
according to [1 + C(n, g)le,(n), resulting in the following
filtered-error (FE) algorithm (see Fig. 10):

6(n + 1) = 8(n) + aR'(n + Nd,(N}[1 + C(n, g)le,(n).
(22)

If Cis chosen such that the SPR condition is satisfied, (22)
will have global convergence, as described later. This al-
gorithm has the same general form as that in (10) with
di(n) = ¢,(n) and e;(n) = [1 + C(n,q)le,(n); i.e.,
F(n,q) = 1Tand G(n,q) = 1 + C(n, g). In order to have sat-
isfactory convergence it is desirable that 1 + C =1 — A,
a condition that is not always possible to achieve in prac-
tice since A « is usually unknown. Table 2 summarizes the
FE algorithm with the standard initial conditions.
Although we have expressed C as a time-varying filter,
the coefficients are often fixed so that stability monitoring
will not be necessary. Simultaneous adaptation of C could

14

IEEE ASSP MAGAZINE APRIL 1889

Z
x(n) B(n.g) Z°(n)
1-A(n,) -
7

d(n) . Y -
e (n)

1+C(n,q)

Estimate of

1-A_(q) Filtered o.(n)

Error f

Figure 10. Filtering of the Output Error. The filtered-
error (FE) algorithm is obtained from the PLR algorithm
simply by filtering the output error g,(n) with the poly-
nomial 1 + C{n, q), which serves as an estimate of the un-
derlying system poles 1 — A,(q). If theratioof 1 + Cln, g
and 1 — A,(qg} is close to 1, then the SPR region associ-
ated with the unknown system nearly fills the entire sta-
bility region.

help to satisfy the SPR condition in a real-time manner,
but the algorithm will no longer be self stabilizing [Jo84].
The same stability tests used for the RPE algorithm would
be needed here. Clearly, a time-varying C offsets a desir-
able feature of the approximate gradient methods.

A somewhat more complicated form of the FE algo-

TABLE 2
PLR Algorithm with Error Filtering
INITIALIZATION:
am(0) = b,(0) = 0
x(n—m)=y,(n—-—m)=en—m =0

R(0) = &1

VECTOR DEFINITIONS:
6(n) = [a4(n), . .., an-a(n), be(n), - . ., byu_s(MT"
do(n) = [yoln = 1),...,70(n = N+ 1),
x(n),...,xn — M+ D]
FOR EACH NEW INPUT x(n),d(n); n = 0:
Yo(n) = &' (), (n)
e(n) = d(n) — y,(n)

en) = 3 colnle,(n — m)

R '(n)¢,(m)Py(n)R ~'(n) )
Aa + iR (), (n)
on + 1) = 6(n) + aR7'(n + 1)¢,(n)es(n)

R'n+1)= %(R"'(n) -




rithm is known as HARF (hyperstable adaptive recursive
filter) [Jo79]. We will not discuss the HARF algorithm here
except to mention that the FE algorithm can be derived
from HARF if we assume that the coefficients adapt
slowly, as we did to obtain the simplified RPE algorithm.
In the literature, the FE algorithm is also called SHARF
(simplified HARF) [Tr78, Le80]. Further discussion of
HARF and SHARF can be found in [Tr85] and [Tr87].

SPR condition

In order to guarantee convergence of the PLR algo-
rithm in (22) it is necessary that the following SPR condi-
tion be satisfied:

1+ C(2) _
Re( —A*(z)> vy>0, forall|zl =1, (23)

where Re (u) denotes the real part of u and the scalar
v = 1/2.% Note that (23) applies only to points on the unit
circle. The SPR condition for the algorithm in (21) is also
given by (23) with C = 0. That is, the pole polynomial of
the unknown system must be such that (23) is valid. In
most cases the SPR condition is not satisfied, as demon-
strated in Fig. 11 for a second-order system. By filtering
the error with 1 + C we can expand the SPR region to in-
clude more coefficient values, although this requires
some knowledge of 1 — A, as mentioned before. Re-
cently, there has been some progress on minimizing the
effects of the SPR condition by increasing the step size «
[Ta87], but there is no general method yet to eliminate
the condition entirely. This is the major drawback with
PLR algorithms.

When C = 0, it can be shown that (23) with y = 1/2 is
equivalent to: |A«(2)| < 1, for all |z| = 1. From this, we
may interpret the SPR condition as a measure of how
close A, is to zero. It is an indication of when ¢, in (21) is
a reasonable approximation to ¢ in (17).

The SPR condition is related to the concept of hypersta-
bility, which describes the output stability of feedback
systems that may have both nonlinear and time-varying
components [Po73]. Hyperstability refers to the asymp-
totic convergence to zero of a state vector that character-
izes the system [La79]. In the framework of adaptive IIR
filtering, this state vector corresponds to the coefficient
error vector 8(n) = 6+ — 68(n). In addition to the SPR con-
dition, hyperstability requires certain restrictions on the
data and on the adaptive filter configuration.

CONVERGENCE ANALYSIS
Stochastic ODE approach

The ODE (ordinary differential equation) approach to
the convergence analysis of adaptive IIR filters is a
powerful technique that requires relatively weak assump-
tions. Subject to certain smoothness conditions on the al-
gorithm, a boundedness restriction on the random data,

®For convenience in computing the SPR regions in Fig. 11 we have
used y = 0; similar results are obtained for other values of y.

and other technical conditions [Lj83], it is possible to rep-
resent (10) and (11) by the following coupled pair of ODEs:

Dy (1) = R3'r) 0 ()]

o (24a)

diRD(T) = g[0p(1)] — Rp(7),
-

where the subscript D distinguishes these nonrandom re-
cursions from the stochastic algorithm, and the update
directions are defined by f[6,(r)] = E[$(7)es(7)] and
gl0, (1)) = Eld¢(n)¢/(r)]. The variable 7 is a compressed
time scale that essentially allows us to observe the
asymptotic properties of (24), which on average repre-
sent the asymptotic properties of (10) and (11) (because of
the expectations used to define f and g).

There have been relatively few analyses of the conver-
gence properties of adaptive IR filters. Most of the re-
sults are derived from work in system identification
where it is often assumed that the step size « = a(n) de-
creases to zero with time; that is, the adaptive algorithm
eventually shuts off. These results are particularly useful
for the system identification application where the un-
known system is time-invariant and the signals are sta-
tionary. In this case, the algorithm in (10) will converge to
a stable point of the ODE with probability one provided
the data is asymptotically mean stationary and exponen-
tially stable [Lj83]. Most of the results are based on work
by Ljung [Lj77] and Soderstrom [So78).

in many adaptive filter applications, however, it is gen-
erally necessary that the algorithm be capable of tracking
time variations in the system or signal statistics, such as
in the equalization of communication channels. It is there-
fore desirable that « be a constant. There are some con-
vergence results for this case, but they are weaker in that
the algorithm converges only in probability. A stable
range of values for « is not determined here, but it must
be “sufficiently small.” These results are based on work by
Benveniste [Be80], Kushner [Ku84], and others [Ma83, Fa88].

Consider the case where a(n) decreases to zero (typi-
cally a(n) = 1/n) and assume that R is always positive
definite. This is usually satisfied if the data is sufficiently
rich in frequency content.” Roughly speaking, there must
be at least as many distinct frequency components in the
data as the number of coefficients in the adaptive filter
[Lj83]. If we assume that there is some method of stability
monitoring to ensure that the poles remain inside the
unit circle, then it is possible to prove the following con-
vergence property of the RPE algorithm: with probability
one as n — », §(n) will converge to 6, such that £(6,) = 0,
corresponding to a stable local minimum, or it will con-
verge to a cluster point at the boundary of the stability re-
gion [Lj83]. Basically, the algorithm performs as expected.
The average asymptotic properties of 8(n) are determined
by the solutions of the ODE, and it is possible to examine
these properties by studying the trajectories of the ODE

(24b)

°In the control literature, this condition is called persistent excita-

tion [Bi84].
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Stability Triangle

SPR Region

-1

Imz

Unit Circle

SPR Region

{2

2

Re z

Figure 11. ‘SPR Region. The SPR (strictly positive real)
region for the second-order HR system H(z) of Fig. S is
shown above in two ways with y = 0 [La79, Tr871:
{a) within the stability triangle in the coefficient space,
and (b) within the unit circle in the z-plane. Observe that
the SPR region is somewhat smaller than the entire
stable region. This result can be generalized to higher-or-
der systems, and the conclusion is that only a subset of
all. systems satisfy the SPR condition. This is particularly
important for oversampled systems because in that
case the poles tend to cluster near z = 1, which is not in
the SPR region. Note that the regions near z = 1 and
z = —1 correspond to the lower right and lower left cor-

Unit Circle

ners, respectively, of the stability triangle. It is possible
to modify the SPR region by adding zeros. For example,
consider

-1
H@ = — T2
1~ a127" — 8z
The effect of this zero is illustrated in (c) and (d) for
three nonzero values of ¢. The SPR region lies above the
curves in the coefficient space, and inside the contours
in the z-plane. Note that ¢ = —1 results in a straight line
in the coefficient space and a circle in the z-plane which
includes the region near z = 1.

solutions via computer simulations.

For the PLR algorithm in (21) and the FE algorithm in (22),
we must assume that the adaptive filter is operating in a
system identification configuration and that it has suffi-
cient order to model the unknown system coefficients 6,.
An equivalent requirement is that there exist H,(g) and
H,(q) such that we can express the filtered output error as

e(n) = Hi(@)di(m [0« — 6(mM] + Higv(n),  (25)

where H,(g)v(n) is independent of ¢, (n) [i.e., v(n) is inde-
pendent of x(n)]. If we also assume that H,(z) — 1/2 is
SPR, then it is possible to prove the following conver-
gence property of the PLR and FE algorithms: with proba-
bility one as n — », 6(n) will converge to a stable point
such that E[y,(n) — y.(m]* = 0, where y.(n) = d(n) —
v(n) is the output of the unknown system (before the
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measurement noise is added). In effect, the algorithm
has global convergence to 8,. It can easily be shown that
H,=1/(1 = A,) and H, = 1 for the PLR algorithm, and
that H, = (1 + C)/(1 — A,) and H, = 1 + C for the FE al-
gorithm. This convergence result does not require stabil-
ity monitoring (for fixed C) [Lj83], but it is more restrictive
than that of the RPE algorithm since it assumes the sys-
tem identification configuration implied by (25).

The ODE method does not prove convergence of the
algorithm to the global minimum of &, except when there
are no local minima. Furthermore, it does not provide any
information concerning the rate of convergence, only
that asymptotically the algorithm will converge. Thus,
there are some limitations to the ODE method as com-
pared to the standard techniques used for adaptive FIR
filtering. The eigenvalues of the Hessian matrix probably




influence the rate of convergence, but unlike the Hessian
matrix in adaptive FIR filtering, it is time-varying even
when the data is stationary. Computer simulations are
still the only method of studying the rate of convergence,
and these can be misleading because it is known that the
rate is greatly influenced by the initial conditions on ¢
and R. In summary, the convergence analysis of adaptive
IR filters is somewhat limited and the problem is still
largely unsolved.

Hyperstability and averaging approaches

There have been other approaches to the convergence
analysis of adaptive IIR filters which we briefly mention
here. For deterministic signals, hyperstability theory can
be used to prove convergence of the PLR and FE al-
gorithms under assumptions similar to those described
above. This was done in [Jo79] for the HARF algorithm,
and in [Jo81] for the SHARF algorithm (which is essen-
tially equivalent to the FE algorithm). Averaging analysis
[An86] is another important approach that is analogous to
the stochastic ODE method except that it replaces the
ensemble averages in (24) with suitable time averages.
Basically, similar convergence results as those stated
above with probability one are obtained here, but « need
not be a decreasing function because a strict bounded-
ness condition on the data is assumed.

ALTERNATIVE REALIZATIONS

To resolve some of the problems associated with direct-
form adaptive IIR filters, algorithms for alternative real-
izations such as the parallel, cascade, and lattice forms
have been developed. These structures offer simple sta-
bility monitoring and are less sensitive to finite-precision
effects (coefficient round-off).

Parallel form

The parallel form [Hv76, Je86] is derived from a partial
fraction expansion of the pole-zero filter in (7), resulting
in the sum of L = (N — 1)/2 second-order sections as
shown in Fig. 12. Stability monitoring is trivial in that we
require only that |a,, 5| < 1 and |a,,| <1 — an,, for each
section, m = 0,...,L — 1 (see the stability triangle in
Fig. 9). The gradient components are also easy to com-
pute because the sections are essentially independent;
the gradient of one section does not depend on the coef-
ficients of any other section. The exact gradient requires
only order 4L computations, and it has essentially the
same complexity as the simplified gradient of the direct
form. Note that a simplified gradient is computed in
Fig. 12 for each section, resulting in a reduction of com-
plexity by a factor of two since there are two feedback
and two feedforward coefficients in each section.

A disadvantage of the parallel form is that there are
now many different global minima which can be obtained
by reordering the poles among the different sections. It
has been shown that this property leads to saddle points
on the manifold of equivalent sections that separate the

global minima [Na88a]. If the algorithm is initialized on
such a manifold (e.g., 6(0) = 0), then the convergence
rate may be slower. It is therefore desirable to initialize
the poles to different locations; for example, they might
be equally spaced around a circle with a small radius on
the z-plane. Another approach that has improved conver-
gence properties uses a DFT to first preprocess the input
signal to generate N signals in parallel [Sh89]. These
(complex) signals are then filtered by a bank of first-order,
pole-zero filters in a manner similar to the parallel form
above. In this way the section input signals are now sta-
tistically different (because of the spectral shaping of the
DFT) which can lead to faster convergence.

It should be noted that the cascade form is very similar
to the paralle! form in that it is generated by factoring the
filter in (7) into the product of L = (N — 1)/2 second-
order sections [Da81]. Stability monitoring is also trivial
here, but the complexity of the gradient is significantly
greater. This can be understood by noting that the output
signal of each section depends on the coefficients of that
section as well as all previous sections. Furthermore, it is
not possible to generate an adequate simplified form of
the gradient with a complexity as low as that of the
simplified direct- and parallel-form gradients. Simulations
demonstrate that the cascade form can have a slower
convergence rate than that of the other realizations [Sh87].

Lattice form

The lattice form adaptive IIR filter [Hv76, Pa80] is shown
in Fig. 13, along with an example of how the gradient
components are computed. The complexity of the gradi-
ent is comparable to that of the cascade form, and no
simplified form has been found yet that has satisfactory
convergence properties.”” The primary advantage of the
lattice structure is that stability monitoring is even sim-
pler than that of the parallel form, requiring only that
each reflection coefficient satisfy |a,,(n)| < 1 [Mk76]. An-
other advantage over the parallel form is that it does not
have any saddle points; there is a unique lattice repre-
sentation for any set of direct-form coefficients. Com-
puter simulations indicate that the adaptive lattice filter
has convergence properties similar to those of the direct
form [Sh87], and this appears to be related to its unique
representation.

Observe that the feedforward coefficients weight the
lattice node signals (backward residuals [Ha86]) in the
same way an adaptive FIR filter weights the delayed input
signal of a tapped delay line. It can be shown that when
the input x(n) of the lattice is a white random process,
these signals will be mutually uncorrelated. Conse-
quently, fast convergence of the feedforward coefficients
can be achieved using only a stochastic gradient algo-
rithm. This property is not shared by the parallel and cas-
cade forms because each subsection is implemented in a
direct form.

A simplified gradient has been derived in [Ay82], but it was shown
that the resulting algorithm has convergence problems.
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Figure 12. Parallel-Form Adaptive lIR Filter. A parallel
form of second-order sections is obtained from a partial
fraction expansion of the direct form [L = (N — 1)/2].
The gradient of the output with respect to the filter co-
efficients is uncoupled in the sense that the coefficients
in one section do not affect the output of any other sec-
tion. As a result, the (N — 1)-order inverse polynomials
used to generate the gradient components of the direct

form are reduced to only second-order polynomials —a
different one for each section. Further simplification
is obtained by assuming that the coefficients change
slowly. in this case, only two filters are needed for each
section: one for the feedback coefficients and another
for the feedforward coefficients. This simplified form is
illustrated above where the gradient components are
shown only for the last section.

CONCLUSION AND SUMMARY

This paper has presented an overview of the important
structures and algorithms used in adaptive IIR filtering.
All of the output-error realizations have some form of
feedback and, consequently, the adaptive algorithms are
more complicated than those used in adaptive FIR filter-
ing. There are several important issues associated with
convergence, such as the need for stability monitoring,
satisfying the SPR condition, and the possible existence
of local minima and saddle points. The theory of adaptive
IR filters is incomplete because the analysis involves
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highly nonlinear systems, but there has been significant
progress in recent years. Computer simulation studies of
the algorithms are usually necessary in order to deter-
mine convergence rates and to predict the overall perfor-
mance. It is anticipated that future research wili focus on
alternative realizations such as the lattice form and on im-
proved convergence analysis techniques. Because they
offer a significant reduction in computational complexity,
adaptive IIR filters are an important alternative to conven-
tional adaptive FIR filtering.
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Figure 13. Lattice-Form Adaptive IIR Filter. The adap-
tive IIR lattice filter consists of a feedback lattice struc-
ture characterized by the reflection coefficients {a,(n}}
and a feedforward structure characterized by the coeffi-
cients {b,,(m}. Observe that the gradient component for
a feedback coefficient [shown only for ay_4(nll requires a
separate lattice filter using intermediate signals of the

adaptive lattice filter as input signals. This is consider-
ably more complicated than that of the parallel form, and
there does not appear to be a satisfactory way of simpli-
fying this result. The gradient compaonents for the feed-
forward section are simply the feedback node signals
(backward residuals), as shown above for by_4(n).
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