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This class of ZNL's is the most general class such that Xo(t) is a well-
defined second-order random process, and it is a more general class
than will be encountered in practice,

The ZNL g(-) can be represented as
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H,(-) is the nth Hermite polynomial
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and the convergence is in an Ly sense. It then follows [3] that the
autocorrelation function of X, (1), denoted by

Ra(n) =E{g[ X (r + )] g[ X;(1)] }

is given by

o Rl(T) n
Ry(ry= 3" b,’,(“)
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where the convergehee is absolute and uniform.
The autocorrelation function of the output Y (1) is given by

Ry(n) =f f Roylr+v -w) ha(v) By (u) dv du

where /1,(-) is the Green’s function characterizing the second lincar
time invariant system. Thus it is seen that the presence of the ZNL
&(-) is manifested in the output autocorrelation function. However,
notice that the ZNL is characterized by the coefficient sequence

by 1, while the output autocorrelation function is coupled to the
ZNL through the coefficient sequence {b,:;} By changing the signs
of the coefficients {b,,}, ZNL’s can frequently-be exhibited which
differ radically in functional form. For example, let R{(0) = ¢2 and
consider the following three ZNL’s:

g1() =sin <uﬁ)
(o3

&2(u) = sin <M> +<2 2)14
a eo

£3) = ¢ sinh(u 2).
o
is easily shown [4] that for each of these ZNL’s the coefficient
quences have the same magnitudes. Thus if one of these three ZNL’s
used in the original nonlinear system, it is impossible to tell which
One it is, if our decision is based only upon knowledge of the output
Autocorrelation function,
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Comments on and Additions to “An Adaptive Recursive
LMS Filter”

C. RICHARD JOHNSO'N, JR.,axp MICHAEL G. LARIMORE

In the above letter!, the author presents an algorithm for adaptively
adjusting a recursive filter similar to that for the nonrecursive LMS
adaptive filter [2]. While the algorithm is of interest because in certain
cases, it forces the filter to minimize a squared-error criterion, the
analysis presented is basically misleading and its implied generality is
incorrect. Furthermore, we will show that in general the algorithm
does not minimize squared error as claimed.

In equation (4)2 of the above letter, the expected squared error
between a desired signal and the output of a recursive filter is given.
Equations (5) and (6) are meant to represent the gradient of this error
functional with respect to the parameters of the recursive filter. Under
the stated assumption of constant correlation statistics this step is
correct.  However, their incorporation into (9) and (10), a crucial
insertion, is invalid.

.Only for the purposes of recursively estimating filter coefficients
from constant correlation statistics known ¢ priori as in (7) and (8) do
the gradient estimates of (5) and (6) have meaning. To assume that
these statistics for the optimal filter are available a priori is, in general,
an unrealistic assumption. Only in the case where the desired signal is
the output itself of some unknown filter can these statistics be given
practical significance. This case degenerates to the parameter estima-
tion of the filter transfer function from input and output statistics.
The solution for the practical case of finite measurements is the well-
known least-squares method [3, c¢h. 2]. In Feintuch’s letter, (7) and
(8) supply a recursive gradient search solution to this problem. Equa-
tions (7) and (8) are applicable in this case only because the parameter
estimates are not used in determining the future input sequence,
justifying the assumption that “the statistics . . . are not a function of
the [adaptive filter] weights.”

When the filter coefficients are updated during operation the re-
quirement of constant correlation statistics is obviously violated.? The
complete form of the gradient of the current value of the expected
squared error with respect to the filter parameters is

Vg lE {2} = -2 Efetk) (X

AVar - Dl Ve k- N B}
VaIE{E W }] = 2 £ {etr) (vh) i

“(Vpytk - DI [Vgy(k - Ng)BD} (A)

analogous to the gradient for the deterministic case given in Feintuch’s
first reference [4] and in [5]. The substitutions of (7) and (8) yielding
(9) and (10) can be recognized as abrupt truncation of the true gradient
formulas (A) leaving only the first term. This parallels higher order
approximations, including several terms from the recursive expressions
for V4y(-) and Vgy(:), presented in [6] and [7] with limited success.
A recent derivation of an adaptive recursive identifier [8] and an earlier
quasi-stationary analysis of the recursive adaptive filter problem 91,
both proven via hyperstability theory and then related to gradient
methods, require formation of a generalized error to be used in adjust-
ing filter parameters, as a properly weighted summation of past output
errors, which is similar to these efforts with higher order gradient
approximations.

Despite the mathematical invalidity of using the forms of the gradient
(5) and (6) with instantaneous estimates to form (9) and (10) from (7)
and (8), desirable behavior can occur as presented in the simulations
of [1]. Inferring global utility from these two examples, however, is
dangerous since the scheme has severe deficiencies not revealed by
these examples. As noted in [6] and [10], the squared-error surface is,

Manuscript received December 27, 1976.

The authors are with the Department of Electrical Engineering, Stan-
ford University, Stanford, CA 94305,

!'P. L. Feintuch, Proe. IEEE, vol, 64, pp. 1622-1624, Nov. 1976.

2Numbers will be used to identify the equations and figures from
“An Adaptive Recursive LMS Filter” while letters will be used to
designate those of this text.

3This algorithm, in the stochastic gradient sense, also violates the

implicit condition of statistical independence between the current input

and the current parameter vector required to utilize (7) and (8) in a ..

stochastic approximation approach {3; p. 2341, since the filter’s output
is fed back as an input as is apparent from Fig. 1 in Feintuch’s letter.
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Fig. A. Approximating dynamic glant by two-parameter adaptive
model.

in general, a multimodal function of the filter coefficients, therefore
limiting the applicability of any gradient search algorithm. Further-
more, assuming convergence, the algorithm of (9){11) does not
necessarily converge to any point of zero gradient, local or global, as
demonstrated by the following simple example of approximating a
second order dynamic plant

-1
~ (10+0112
HE™ = 1 -2
1-p127 - Bz

by a simple first order system (a)/(1 - 5z~!) illystrated in Fig. A. Note
that this case is plagued by insufficient degrees of freedom in the
adaptive filter, unlike the examples of [1] and [6]. To avoid any
question of input richness sufficiency [11] let the plant be driven
by a discrete white noise process {x(k)}. Define the optimal model as
that which matches its output (k) to the desired output d(k) in the
least squares sense. For this case the mean-squared error is

E{20) = E{ld®) - yt))?}

d
= E{Xz(k)}v%lh'(z‘l)]? @
zZ

2

2 HE ] B R s ERTW)

a
1 -
(B)

Defining

dz
o} éf:}/{(z*‘)v -

and dividing (B) by its first term yields a normalized mean-squared
error £

2a a1

gél——zﬁ(z*l)l .

oj z7t=p 1-0%0j

Fig. B shows a contour representation of the normalized mean-
- squared-error surface as a function of the two variable model param-
eters @ and b when

0.05-04z"
1-1.1314z°1 40,2522

The surface is bimodal with the global minimum denoted by a “4” in
Fig. B at (¢*, b*) = (-0.311, 0.906) yielding ¢ = 0.277 and a local mini-
mum signified by a “,” in Fig. B at (¢*, *) = (0.114, -0.519) achieving
£=0.976. It can be shown for this second order case that if the
“unknown” filter’s nonzero zero is outside the unit circle then the
mean-squared-error surface is bimodal.

Suppose that the model were implemented adaptively, i.e., parameters
a and b were initialized to some value and iteratively adjusted as more
data x(k) and d(k) became available. Assuming that (g, b) were set
sufficiently close to (¢*, b*), i.e., within the “valley™ surrounding the
global minimum, a true gradient descent algorithm would force the
model parameters to the optimal values (a*, b*). In vector notation

HEz Y=

)
atk+1) a(k) kl—E[ez]
da
= +

9
bk +1)| | b)) | | ky — E[€?]
3b (a(k),b(k))

_ increase in the error claimed by Feintuch to be rmmm:zed
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Fig. B. Bimodal case-—contour representation of normalized mean-
squared error showing locus of adaptive parameters (a, b): k, =
-0.00028, k, = ~0.025, average of 20 ensemble members.

Convergence can occur if the updating terms vanish

=2 E[€? = 0.
(a(k),b(k)y b (a(k),b(K))

The algorithm presented in [1], however, behaves quite differently.

Using equations (9) and (10)
I:a(k + 1)] [a(k)] l:zkle(k)x(k) ]
= - . ()
bk + 1) bk) kqpetkyyk - 1)
Because the updating term depends directly on the random process
{x(k)} the two parameters are also random processes for this example.
Thus convergence of the statistics of @ and b should be considered as in

[2]. For the means of @ and b to converge the updating term in (C)
must be zero mean N :

E[etx(®)] = Elelt)y(k - D] =0 (D)

a
~E[)
aa

establishing the necessary conditions for a stationary point of the
adaptive algorithm in {1]. However, at the global minimum of the
squared-error surface in the present example

E{et)x(k)} = 0.361
E{etk)yk - 1)} =0.124

i.e. on the average the algorithm tends to push the parameters (4, b)
away from the global least squares solution as evidenced by the experi-
mentally generated locus of successive (z(k), b(k)) in Fig. B. In this
simple case the algorithm has a unique stationary point (0.050, .
-0.852), which is found directly by solving the conditions of (D)
resulting in & =0.988. The small square on the locus represents this
stationary point, to which in this case the algorithm converges. 2

To illustrate that it is not the multimodal nature of the erroz suzface
in the previous example, but rather the nongradient character of the
algorithm which prevents its convergence to a least squares solution, 2
unimodal matching problem is briefly presented. The desired signal
is generated by passing {x(k)} through

0.05
1-1.75z"1+0.81z72

HiEz ™Y =

The single optimum of the normalized error surface is locat
(a*, b*)=(0.132, 0.875), as shown in Fig. C, with £ =0.335.
algorithm’s stationary point is (0.050, 0.967) for which & = 0.656.
filter’s nongradient behavior is apparent from the ascending locu
successive (a(k), b(k)) shown in Fig. C. Both examples demonstra
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Fig. C. Unimodal case—contour representation of normalized mean-
squared error showing locus of adaptive parameters (a, »): k, =
-0.00025,k, = 0,01, average of 10 ensemble members.

These examples argue for the limitation of the use of the adaptive
recursive filter in [1] to cases where the order of the adaptive filter
is not Iess than the order of the minimal filter generating the desired
signal from the same input. This applicability restriction has been
experimentally recognized in [6] and is implicitly satisfied by the
examples in [17.

Development of an adaptive recursive filter, a parallel model reference
adaptive structure utilizing output error [12],isa complicated problem
that has been avoided in the past due to jts complexity [3, pp. 232-
2331, 110} and [3] and forsaken for a series-parallel model reference

Mmatching; and, even then, proper convergence has not been proven by
Feintuch,just implied by successfu] simulation.
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Reply* by Paul L. Feintuch’ and Neil J. Bershad®

Johnson and Larimore’s comments present an interesting example
which attempts to model a twao-pole and two-zero network by using an
adaptive recursive LMS filter that can produce one pole and one gain,
Although it is agreed that the algorithm in [1] will not handle this
case, the question arises as to the fairness or practicality of such a
comparison. It also appears, upon a careful reading, that Johnson and
Larimore’s comments have not noted the significance of the develop-
meat in [1]. We therefore shall discuss each step in the derivation in a
manner which we hope will make clearer the conditions leading to the
adaptive recursive filter algorithm. The equation numbers refer to [1],
and letters refer to Johnson and Larimore’s comments.

Equation (2) represents the output of a recursive filter in terms of the
feedforward and feedback coefficients. For the moment, let us assume
than X(n) and ¥(n) are correlated sequences but we do not presume
that Y(n) is the output of a recursive filter with X(n) as the input,

It is desired to Minimize the mean Square error between (2) and a
desired sequence d(n) as given by (4). If Y(n) is the output of the
Wiener filter, then Rxx, Ryy, Ryy, Rgx cannot be specified inde-
pendently.  Suppose that the statistics of Rxx, Rgx are known g
priori. Then the Wiener filter can be obtained and Rxy, Ryy, and
Rgy can be computed from R y s+ Rax. Having specified the Wiener
filter, say by its impulse response o(t), we can ask the following
question, Suppose we desire to synthesize the Wiener filter by using
the feedback structure described by (1) and for some reason did not
want to Laplace transform ho(t) to obtain the a’s and b’s. Instead we
desire an algorithm for finding 4 and B from Ryx, Ryy, Ryy, Rgy,
Rax. Equations (7) and (8) represent a gradient search algorithm for
achieving this goal. Note that the error surface in (4) is quadratic
function of 4 and B, A(n) and B(n), if they converge, will converge to
the values given implicitly by (5) and (6). When A4 and B have suffi-
cient degrees of freedom to model the Wiener filter as a recursive
structure, then extensive simulations show that 4(n) and Bn) converge
to the weights of this recursive structure. If'4 and B do not have
sufficient degrees of freedom to model the Wiener filter, then it is not
clear in general to what A(n) and B(n) converge.

Before proceeding to (9) and (10), let us now consider the impact
of the results obtained by Johnson and Larimore. They show that the
error surface using the recursive filter network al(1 -~ bz7YY is not a
quadratic function of 5. They do this by evaluating the mean square
érror as a function of 5. How does this relate to (3) and (4)? If we
fix the filter structure as ¢/(1 -bz71), then we could calculate the
correlations for (4). These correlations are not the Wiener filter correla-
tions discussed above. Rather they are the correlations for the filter
with transfer function al(l - bz, Equations (5) and (6) will deter-
mine the values to which @ and b in (7) and (8) converge. Letting
d@, b denote these values, (5) and (6 vield

d = H(0)
H(b
b=(1-»2y 2e0)
H(0)
where
0.05 - 0.4z71

H(z"1) e
1-1.1314z71 4 g 25,2

as in the above letter. Note that ¢ and 5 depend on the settings for a
and b that were used to generate the correlation matrices,
If the values for ¢ and b are not the values for the Wiener filter (or

4 Manuscript received March 16, 1977,
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the recursive filter does not have enough degrees of freedom to repre-
sent the Wiener filter) then & and b will not, in general, converge to
a and b since the assumptions in (3) and (4) are that the correlation
functions correspond to those of the Wiener filter. If, for example
H (z™1), the filter to be modeled, is given instead by

BEy ="
z = e——
1-5bz71
then
di=gq
. Q-0 a
b:E ) =b
a 1-52

) A~ . ~ . .

That is, the equilibrium values for @ and & are the Wiener filter
settings. Thus the recursive algorithm, (7) and (8), converges to the
Wiener filter.

Now let us return to (7) and (8). Because none of the statistics are
known a priori, (9) and (10) replace them by estimates. The estimates
of Rxx, Rxg are unbiased. The estimates of R xy, Ryy,and Rgy are
possibly biased but more importantly, are functions of 4 and B.

Johnson and Larimore assume, and are supported by simulation
results, that the steady state behavior of tglge mean weights of the
system are statistically independent of the presgnt data. This assumption
is implicit in being able to solve equation (D) explicitly for the station-
ary point of the algorithm in [1]. Thus by their two examples they
have supported the hypothesis that (5) and (6) give the values to which
the means of (9) and (10) (the recursive LMS algorithm) converge. The
recursive LMS algorithm does not converge to the least mean-square
error filter in this example since (7) and (8) do not converge to the
MMSE weights for @ and b. This does not imply that the algorithm is
faulty since the examples of the above letter do not legitimately con-
sider unconstrained LMS filters. The problem of finding the best filter
within a given structural class is not the basis for deriving a Wiener
filter. The Wiener filter can be derived by using the orthogonality
principle, making the error arthogonal to all of the data. Equation (D)
is not the orthogonality principle since we should require

Elett)x (/)] =0,
It is suspected that the sccond condition
Efett)y (/)] =0,

implies the first whenever the feedback structure has sufficient degrees
of freedom to represent the Wiener filter.

it is important to note that seeking the Wiener filter implemented in a
specified recursive structure is the motivation in {1]. The resulting
filter may not provide the minimum mean square error in all cases. The
object was to oblain a filter that reduces mean-square error. The
resulting algorithm is of interest, since in many cases it does this, and it,
rather than its motivation, should be the subject of discussion. The
point here is that for the case presented in the above letter, the Wiener
filter cannot be implemented for the severe set of constraints on the
problem. This is evidenced by the minimum-mean-square cIror occur-
ring at a point where the error is not orthogonal to the data. Since the
Tecursive adaptive algorithm attempts to set the error orthogonal to the
data, for this example it provides a higher mean-square error.

Among the features of the adaptive recursive LMS filter is that when
given sufficient degrees of freedom, i.e., two feedforward and two
feedbackward adaptive taps to model the two pole-two zero fixed
parameter network, then the system converges to the proper tap values.
This is documented in Table I. In addition, if the adaptive algorithm
is given three feedforward and three feedback taps, then it converges
more rapidly to a solution with smaller mean square error, but with
different tap values (Table II). Interestingly, the transfer function of
the recursive adaptive filter matches the network being modeled. That
is, given additional degrees of freedom, the algorithm produces a
redundant pole-zero pair which cancels. The same property holds for
higher order filters. On the other hand, as the number of taps in the
adaptive system is reduced below that required to provide a solution,
the degradation in performance is not the dramatic threshold behavior
implied in the above letter. Instead, for higher order systems, it is
gradual, becoming more severe as fewer taps are used, as simulations
have shown. -

In most adaptive system applications, the order of the system re-
quired is not known. The designer allocates more taps to the problem
than the minimum number sufficient to provide a solution. The limita-

forallj < k.

forallj <k -1
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TABLE 1
MoveLing H(Z) = (0.05 = 0.40Z7) /(1 — 1.1314Z™" + 0.252°%) wern 11e
Recursive ApaprTive FiLter with Two FEEDFORWARD AND Two
Feeppack Taprs; &y = ky = ~4.3 X 107, WeicnTs INTIALLY ALL ZERO

Number of

Normalized

Tterations, n ag{n) 2, (n) ayin) by (n) bg(n)  by(n}  mms error
8192 0456 -.3633  ~.2968 -.3816 -.3845 -.0573 2096
16384 o .0520 -.3649  ~.2701 -.4497 -.4431 L0713 .0939
24576 L0503 -.3676  -.2599 -.4805 -.4530  .1273  ,0378
32768 .0503 ~.3679  -.2552 ~.4926 -.4613  .1466  .0143
40960 .0502 -.3682 -.2538 ~.4967 -.4639 1539 0049
49152 L0500 -.3683  -.2533 ~.4982 -.4648  .1566  .0018
57344 .0500 -.3684  -,2531 ~.4988 -.4652  .1576  .0007
65536 L0500 -.3684  -.2529 -.4989 -.4653  .1580  .0003

TABLE 11
MobeninG H(Z) = (0.05 = 0.40Z7) /(1 = 113427 + 0.252°%) witn 1ne
Rectrsivie Apaptive FILTer with Threr FEEDFORWARD AND Threr

Frevsack Tavs; &y = k2 = —4.3 X 107 Wriiis Inmiaty Aty Zrro

Rumber of Normalized ’

Iterations, n a,(n} a,{(n) b, (n) bLe(n) Error rms
8192 .0460 ~.374 -.636 -, 295 .4984
16384 L0568 ~.381 -.817 -.095 L3652
24576 L0503 -.393 ~.945 .056 .2508
32768 .0518 ~.393 ~1.035 J141 L1545
40960 .5024 ~.398 -1.082 .194 L0807
49152 L0497 ~. 398 ~1.107 .223 L0416
57344 L0497 ~. 400 ~-1.121 .238 L0205
65536 L0502 -.400 ~1.126 .244 .0090

"oorrect: 95 _ 11 75

value"

tion pointed out does not present a restriction in practice and should
not detract from the large class of problems which the Processor can
handle. Determination of that class is an area of active research.

The two simulations presented in [1] were representative of a large
number of runs under diverse inputs and initial conditions. The adap-
tive network was given a sufficient number of taps capable to handle
the problems. Significantly, it did provide effective solutions. Previous
work in this area [2] indicated that an adaptive recursive filter was not
technically feasible. Our results have demonstrated otherwise.
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Comments on “An Adaptive Recursive LMS Filter”
BERNARD WIDROW axp JOHN M. MCCOOL

The usual application of the “least mean-square” or LMS algorithm
Widrow and Hoff [1] is to nonrecursive or feedback-free adaptive
tems. An example of such a system is the adaptive transversal filte
which has been shown to be capable, when its operation is governed b
the LMS algorithm, of adjusting itself to minimize mean-square el
[2], [3] where “error™ is defined as the difference between the filt
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output and a *
The drawback of the nonrecursive LMS filter is that it has a finite im-

In the above letter,? a recursive adaptive filter based on the LMS al-
gorithm has been described, This particular filter is structurally ca-
pable of realizing both zeros and poles of a transfer fanction and
of having an infinijte impulse response. It thus promises to be a useful

N, Np

I
yim=3%"

ags(n - k) + Z bry(n - k). 1)
k=0 k=1
In vector notation he obtains
y(n) = ATX(n) +B8Ty(n), 2

o
He defines the €rror as the difference between thé"desired response d(n)
and the actual response y(n)

e(n) =d(n) - y(n) = d(n) -4 TX(n) - BTY(n), (3)

He then squares and takes expected values to obtain the mean-square
crror

Elefm)] = E[@*(m)] + ATR 54 +BTRyyB - 24TR ;5
“2BTRgy+247Ry 8 (4)

where the covariance terms are defined a5

Rxx =EIXmXT0], Ryy =k Y YTin)], Ryy

= !:'{d(n)X(n)] » Rgy= E[d(n)Y(n)] > 4and Ry y = E[X(H)YT(H)] .

Since all algorithms in the LMS family [4]~[19] are based on optimiza-
tion by the method of steepest descent, the next step required is dif-
ferentiation of (4) to obtain the gradient. In taking this step, however,
Feintuch argues that the covariance terms Ry, Ray, Ryy are con-
Stants when differentiated with respect to the feed-forward and feed-

Let us examine the recursive LMS filter from another point of view.
Fig. 1 shows a nonrecursive filter comprising an adaptive transversal
filter whose impulse response is controlled by adjusting its weighting
Cocfficients. This filter is an “LMS filter” when the coefficients are ad-
Jjusted through the LMS algorithm. Fig. 2 shows a recursive filter
Comprising two adaptive transversal filters, one providing a feed-forward
network and implementing zeros and the other providing a feedback
network and implementing poles.* When the LMS algorithm is used to
adjust the weights of both filters, the result is a “recursive LMS filter”
L identical to the one described by Feintuch. If the input signal and

!The terms ‘“zero,” “pole,” and “transfer function” belong to the
domain of of fixed filters; they are nevertheless useful in the analysis of
adaptive filters, though their meaning in this context cannot yet be
Precisely defined. .
2P, L. Feintuch, Proc, IEEE, vol. 64, PDp, 1622-1624, Nov. 1976.

*As well as s known at the present time, the algorithm minimizes
Experimental evidepc? indicates that this

€n using the recursive LMS algorithm, in Some cases mean-square
Fror apparently is minimized but in others ijt clearly is not. Under
ertain  conditions we have observed the recursive LMS algorithm,
Nitially set at the minimum mean-square-error solution, to cause the
o Weights to vary from this solution and stabilize elsewhere.
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desired tesponse of this filter are statistically stationary, it is clear that
the covariance matrix of the inputs to the weights of the feed-forward
filter is fixed and independent of the weight values, while the covari-
ance matrix of the inputs to the feedback filter is dependent on the
values of both the feed-forwaid and feedback filter weights. The latter
dependence is characteristic of adaptive feedback systems.

The recursive adaptive filter was studied more than ten years ago by
P. E. Mantey as a doctoral student at Stanford. He showed that the
mean-square-error  function was not quadratic and was sometimes
multimodal. Mantey did not pursue his work because of the unpredict-
ability of this filter and the difficulty of understanding its behavior.
Instead he devised a recursive adaptive process using the desired re-
sponse as feedback signal rather than the filter output {17]. His goal
was to achieve constancy in the covariance terms and to obtain a
quadratic mean-square-error function with a linear gradient. Feintuch’s
mathematical derivation corresponds to Mantey’s second algorithm
rather than to the recursive LMS algorithm.

Despite the foregoing qualifications Feintuch's work is an important
contribution. He has stimulated new interest in the recursive LMS
filter and has shown experimentally that it performs well as a substitute
for the nonrecursive transversal filter in the self-tuning adaptive filter
or “adaptive line enhancer” described by Widrow e al. [18] and shown
in Fig. 3. In our work with the line enhancer, we have confirmed
experimentally that low-level narrowband signals in noise can be
effectively detected by a recursive LMS filtefwith poles close to the
unit circle.®* Fig. 4 shows, for example, plotted on linear scales, the
input and output power spectral densities of a signal"before and after
processing by a filter with three zeros and two poles. The measured
improvement in signal-to-noise ratio, with only five adaptive weights,
is approximately 40 dB. We are thus confident that the recursive LMS
filter has important potential applications in the fields of signal detec-
tion, instantaneous frequency estimation [19], and spectral analysis.
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Re‘ply6 by Paul L. Feintuch’

I should like to thank Professor Widrow and Dr. McCool for their
comments and simulation examples which agree with mine [1]. I too
have found that the device is stable and has potential for signal detec-
tion and spectral analysis applications. However, I must disagree with
their claim that the analysis is incorrect. A heuristic derivation was pre-
sented for which the key assumptions were clearly pointed out. What is
appearing here is a differing viewpoint rather than mathematical error.
There is no question that when viewed as in the above letter, the output
correlation statistics are functions of the weights. I was aware of this
by referencing White [2]. However, the approach, instead, was that of
a Wiener filter for which e priori statistical information is used to dic-
tate the filter parameters rather than the reverse. For the fixed param-
eter case, it is certainly valid to view the problem in this way. The
procedure was to assume that we have the Wiener filter and are using its
input and output statistics to determine the parameters in the recursive
digital filter structure. At this stage the correlation matrices are not
functions of the filter weights and are thus constants when forming the
gradient vectors. The gradient search procedure removes the need to
invert matrices, and the problem reduces to one of obtaining the
statistics, just as it did in the transversal LMS case. The open question,
as was noted, is the validity of replacing the output correlations, which
the Wiener filter would produce, by estimates using the instantaneous
output values. These estimates are biased at the outset but have asymp-
totic properties which, though not yet understood, must be desirable to
produce the simulation results that we have both been observing. The
heuristic derivation was presented to show that a logical procedure
suggested the processor structure, rather than its being an ad-hoc hook-
up. I suspect that when the properties of the assumed cstimates are
understood, the behavior of the entire filter will be understood as well.

I have also carefully examined Mantey’s results [3] and do not see
how his work could lead to my algorithm. Instead, his results indicate
that an adaptive feedback structure could nof have desirable stability
or steady-state properties. He thus pursued network modeling in &
feedforward manner only, terminating further research on a recursive
adaptive filter.

The processor is by no means completely understood and its analysis
is complicated. However, the device produces exciting results.
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The Analysis of a Third-Order System
VIMAL SINGH

Abstract—~An example of third-order nonlinear feedback system is
considered. Its previously known sector for global asymptotic stabiht'y
is (0, 1]. In the present letter, several sectors for global asymptotic
stability are obtained. ; :

We_consider a third-order nonlinear feedback system whose lineai‘
part G(s) is given by

2

G(s) = .
O @ D6
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'f(x) and g(x) describe the taper of the line, and x is the distance along
‘the line. The dual L4 of L is characterized by (2):

rax)=rog(x)  calx) =cof(x), 0<x<l 2

Let z,;(s) be the input impedance of the short-circuited line character-

sinh V(k17;)? + e, S
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and it is readily shown that"

uz(RTCT.S'):l/S RTCT=(I'QI) (col)- 9

If the lines are not dual, we have

U(s) =

1
@28 (cosh V112 +18) - (W1 11)? + ay S) - (k1 1y) sinh Vky1))? + 0, §

ized by (1) and let z(s) be that of an ideal gyrator, of gyration resis-
tance 7g, terminated by the open-circuited line (2). Let

Ry=rol Cp=ecgl S=RyCrs 3
so that
r2
21 =fOYRp(s)  Z,() = f(0)< )Q(S) C)
where, from [2],
q(s) = Sp(s). 5)
Let
u(s) = p(s)lg(s) (62)
so that, from (3),
u(s) = 1/S = 1{RyCrs. 6b)

it is casy to see that when the line L is a URC, the lines (L, L4) form a
pair of commensurate URC’s and 6(b) reduces to (3) of {1]. Thus the
synthesis procedure outlined in [1] can be employed to realize a
rational transfer function using any RC line and its dual.

HI. THE EFFeCT OF DEPARTURE FROM DUALITY

The proposed synthesis procedure is based on the assumption that the
lines are duals of one another, which ensures that w(s) is rational in s.
Therefore, the effect of nonduality due 1o the variation of any of the
tapers or distributed parameters should be studied. It is not possible to
study the effect of these two factors on u(s) for arbitrary distributions
of the lines, since solutions of the telegrapher’s equations are not then
available. Even for some solvable lines, it may neither be desirable nor
practical to study this effect. However, it has been shown that a
tapered RC line is equivalent to an infinite cascade of commensurate
URC’s [3]. A study of the effect of the nonduality between a cascade
f two URC’s and its dual on 1(s) has consequently been made. The
wo URC’s considered were commensurate but had different total
esistances and capacitances. Further, the study was made by examin-
“ing the classical sensitivity [4] S:,_(IW) of u(jw) with respect to x;,
- where x; is any one of the distributed parameters. In this study, the
frequency range over which SLu(’w) and S'“(]W)| are both zero is of

interest. In this case, even if the dlstnbuted parameters deviate from
their nominal values, » remains rational in s over this range. However,

the frequency range over which SL‘;(’ ")l i constant and small is also of
i\ interest, provided SLu(]W)

is very small over this range. Over such a

© range, instead of bemg proportional to (1/jw), u(jw) will be propor-
" tional to ((1 + €)/jw), where € is a real but small number. Hence, it is
“seen that u(jw) will also remain rational over this range.
.. The above study strongly led to the following conjecture.
. 1) If the lines are not exactly duals of each other, there are two
regions of w, namely, a lower and an upper region, over which u will
remain rational in w. In between these two regions u cannot remain
rational.
ii) The range of the lower region will increase with decreasing values

of the taper.

In order to justify the conjecture, the following two exponential lines
ere used to form the impedances 2 (s) and z,(s) given by (4):

ne) =ro; K% cix)=cop R, 0<x <l
r2(x) = oy e2Fa* ) =cor e, 0<x<l, (D)
* If the lines are duals of each other,
To1 =70z =70 Coy=cop=co Iy =lp=1 ki=-ka=k (8)
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< (cosh Vika12)? +228) - (V(ka12)? + a3 8) = (ky 1) sinh Vikyl3)? +ag§

. where

(10)

(I'o]'l,') . (Cojlj) =RjTCjT= o:jRTCT(]' =1,2). (11)
We note that Sk L= ~Sk 1, and Sa =-1- Sa A close study of the

plots of Sx' (where x; is any one of the parameters of the lines) indi-
cates strong agreement with the conjecture. For lack of space, only
some of the plots are presented in Fig. 1. Note that the curves labelled

1, which correspond to the case of URC's, are identical to Figs. 1(c)
and (d) in {1].
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An Adaptive Recursive LMS Filter
P. L. FEINTUCH

Abstract—An adaptive, recursive, least mean-square-digital filter is
heuristically derived that has the computational simplicity of existing
transversal adaptive filters, with the additional capability of producing
poles in the filter transfer function. Simulation results are presented to
demonstrate its capability.

INTRODUCTION

Adaptive digital filters that are constrained to a transversal tapped
delay structure appear in the literature [1]. These filters converge to
optimal processors in the mean-square-error sense, do not require
a priori knowledge of second-order statistics of the observed and
desired waveforms, are easily implemented in real-time with little
storage, and can track parameters that vary slowly with respect to the
convergence time of the iterative process. Such filters have a finite
impulse response, i.e., they can produce only zeros with no poles in the
filter transfer function. This limits the capability of transversal adap-’
tive filters in many applications. To overcome this limitation, a new:
adaptive filter structure is described which is capable of producing poles
in the transfer function and is easily implemented using two transversal
adaptive filters.

B - NN

ANALYSIS

The recursive filter structure, in the time domain, is described by the »
input-output relationship

Np Npg
ymy= 3 apx(n-k)+ 3 bry(n k).
k=0 k=1

Manuscript received February 9, 1976; revised June 21, 1976.
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- The set {ak} isreferred to as the set of feed-forward coefficients and the
set {by} are the feedback coefficients. In vector notation, let 47 =
[aU)als T 9aNF] s B = [blrbZ: e sbNB] » X(n)T= [x(n),x(n "1)3

-+, X(n ~Ng)], and YT = [p(n ~1),- -+, y(n - Ng)]. Then equa-
tion (1) can be rewritten as

Assume that the observables are wide-sense-stationary and zero mean.
The filter is used to estimate a desired waveform, d(n), in a minimum
mean square error sense. Let e(n) denote the error waveform at the nth
time sample, and £(-) denote the expectation operation. Then

e(n) =d(n) - y(n) =d(n) - ATX(n) - BTY(n). 3)
E[e*(m)) = E[d*(m)) +ATRxx A +BTRyyB - 24 TRy
-2BTR 3y +24TRxyB “)

where

Rxx=EX(m) XTm)), Ryy=E[Y() YT®)], Rax =E[d(n) X(m)]
Ray =E[d(n) Y(1)], and Ryy=E[X(n) YT(n)].

r

The theory of Wiener filtering employs know‘rs second order input
statistics to dictate the impulse response, h(t), of the linear filter that
minimizes the mean-square error. Once h(t) is known, output statistics
can be calculated a priori. The algorithm for the transversal adaptive
filter uses prior knowledge of the cross-correlation between the ob-
served data and the desired waveform (Rax), and the autocorrelation
of the observed data (R xx). The recursive adaptive algorithm requires,
in addition, the autocorrelation of the output (R yy), the cross-correla-
tion of the output and the input (Rxy), and the cross-correlation of
the output with the desired waveform (Rgy), which can be calculated
using #(t) as mentioned above. Thus the set of statistics at the Wiener
filter output is assumed, for the moment, to be known, and will be used
to determine the weights in the feedforward and feedback filters. The
statistics for the fixed parameter network are not a function of the
weights, but instead the weights are a function of these statistics.
Therefore, Ryy, Rgy, and Ryy are constants when differentiating
with respect to the vectors A and B. The set of weights that minimize
the mean squared error is found by setting the gradient vector with
Tespect to the filter parameters equal to zero;

ValE(e?(n)]) =2RxxA - 2Rgx+2RxyB =0

A=R3}Rax ~-RxyB) (5)
VslE(*(n))] = 2RyyB - 2Rgy + 2Rky A =0
B=RYyRay -R%y ). Q)

Thus, one can solve for the filter coefficients if all the second-order
Statistics are known. These statistics are not known in general, and the
Mmatrix inversions are intractable even if the matrices are known. The
filter is made adaptive to estimate the unknown statistics. An iterative
gradient search technique (the method of steepest descent) is used. It

updates the filter coefficients with steps proportional to the gradient
vector;

A+ 1)=A@) + k V4 [E2(n)))

=A@) + 2k [Rxx A() - Rgx + RxyB@m)] M
B(n+1)=B(n) + kyVg[E(e2(n)))

=B(n) + 2k, [RyyB(n) - Rgy + Ry A®m)].  (8)

The LMS algorithm [1] replaces the unknown matrices with instanta-
Reous estimates of their values. The a priori statistic R Xxx is estimated
by X(n) XT(n) at the nth iteration. Similarly Rgx is estimated by

dm) X(n), Ryy by X(n) YT(n), Rgy by d(n) ¥(n), and Ryy by
£ Y0 Y7(n). 1t is shown in [1] that d(n) X(n), and X(m) X T(n) pro-
vide unbiased estimates of Rax and R xx, respectively. The quality of
the estimates of output correlations using the instantaneous estimates
Is currently an open question. Proceeding formally with the LMS pro-
cedure results in the following vector difference equations:

A+ 1) =400 + 2k, [X(m) XT(m) A(n) - d(m) X(n) + X () YT () BC)]
=An) ~ 2k1e(n) X(n) )

iy =ATxm) + BTY (n), @

Fig. 1.

Fig. 2.

Fig. 3.
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Adaptive recur‘sive LMS li‘ilter using two transversal adaptive
ilters.
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- Bnt1)=B(n) + 2k [ Y1) YT (1) Bn) - d () Y(n) + Y(0) XT(m) A(m)]
=B() - 2kye(n) Y(m)
ym) = AWTX(m) + BTy ().

previous adaptive recursive filters [2].

SIMULATIONS

tive filter with 8 forward and 8 feedback taps.
was white noise low-pass band-limited to 1150 Hz. The filter input was
the desired signal passed through a filter, with transfer function 1+272

inverse of the fixed parameter filter. As shown, the adaptive filter
approximated a pole at the correct frequency.

Fig. 3 shows the steady-state transfer function of the recursive adap-
tive filter with 16 forward and 16 feedback taps. The desired waveform
consists of two sinusoids in flat broad-band noise, of signal-to-noise
Tatio ~26 dB at 400 Hz, and -10 dB at 750 Hz, in a 1-kHz band, The
filter input was a delayed replica of the desired waveform, such that the
noise was decorrelated due to the delay. The figure shows that the
adaptive filter correctly sensed the correlated waveforms. The 20-dB
difference between response at 400 and 750 Hz, ahd spurious peaks,
shows that the filter attempted to produce poles at these frequencies.
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On the Probability of Success in a Routing Process

PRATHIMA AGRAWAL

Abstract—Lee’s path search mechanism has been identified as a

percolation process and the probability of a successful search is ob-
tained analytically.

Routing of connections on a printed circuit board (PCB) requires
finding nonintersecting paths between electrically common points.
Digital computers are used whenever the number of connections to be
routed s large. Among the many Iouting methods, the one using Lee’s

Some authors [2], [3] have observed that for the Lee router, as the
routing of wires progresses on a PCB, it becomes more and more
difficuit to route new connections, and that the probability of finding
paths becomes practically zero after a certain cutoff density of wiring
has been reached. It appears that the way in which a path is found by
the Lee router is similar to the manner in which a fluid introduced at a
porous medium percolates through the surrounding
. The study of such phenomena is known as percolation theory

- For a given probability of blocked cells in the medijum there
is a probability, known as the percolation probability, with which the

| T is found or further expansion is not possible. When blockings
: fe“f, the expanded cells form diamonds centered around S, as
Own in Fig. 1. Let us assume that each cell on the PCB is blocked
th a probability q and that blocked cells are uniformly distributed
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The filter structure is easily implemented, as shown in Fig. 1. Note that"
the storage required for the weight coefficients is significantly less than

Fig. 2 shows the steady-state transfer function of the recursive adap-

The desired waveform

to produce a zero at 575 Hz. The Wiener filter for this problem is the

algorithm [1], [2] has the advantage of guaranteeing a path if it exists, '
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Fig. 1. Growth of search pattern generated by Lee router.

Lo

Fig. 2. Probability of successful search as a function of q.

throughout the PCB. The cells on a given diamond can be classified as
either diagonal cells with three neighbors to expand, or off-diagonal
cells with no more than twa celis as neighbors. The source cell has four
neighboring diagonal cells.

We now obtain the probability that the Lee’s search process, starting
at a source cell, will terminate. The complement of this probability
corresponds to the event that the search can continue indefinitely.
Notice that a path between two cells will not exist if and only if at least
one of the cells is surrounded by obstacles. Similar probability for
percolation process has only been obtained by the Monte Carlo method
[5]. Consider the cells forming a diamond-shaped boundary around the
source cell at a Manhattan distance k. All the cells in this boundary, at
which the search has successfully arrived, are termed as secondary
sources. We define Pk as the probability that the search starting at a
secondary off-diagonal source cell will terminate. Let Py be the sim:
probability for a secondary diagonal source cell. It can be shown that
Pk depends on py,y, pras, -+ -, and that Pk 2Pk+1 2Pken -+ . In
particular, :

Pr=q%+2q(1- @) pysy + (1~ q)2[q + (1 - @ Pr+2) Preay-

As we decrease k from a large value, py converges to some finite val

p< 1. This is obtained by substituting pr.y = pyyy =pr=p in (1
Thus
pP=q*1-q)3, 0595043

=1, 043<g%1.
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