MIDDLE EAST TECHNICAL UNIVERSITY ELECTRICAL AND ELECTRONICS ENGINEERING DEPARTMENT

EE 201 Circuit Theory I

Midterm Examination 1

November 4, 2013

Duration: 120 minutes

Q1	15 pts	
Q2	15 pts	-
Q3	20 pts	
Q4	15 pts	
Q5	15 pts	
Q6	20 pts	
Total	100 pts	

Name:		
Surname:		
ID No:	Solutions	
Section:		
Signature:		

Question 1 (15 pts)

The figure on the left shows the oriented graph of a lumped circuit.

Some of the branch currents (in Amperes) and voltages (in Volts) are given below.

Find the missing currents and voltages, and write them in the table.

i ₀ = 5A	i ₁ = 3A	i ₂ =	i ₃ = 4A	i ₄ =	i ₅ = -7A	i ₆ =.5.A	i ₇ =	i ₈ = 2A	i ₉ = -4A
v ₀ = 4V	v ₁ = 3V	v ₂ = 6V	v ₃ =	v4=7V	v ₅ = -2V	v ₆ =.]\\\\.	v ₇ =9V	v ₈ =2V	v ₉ =3V

Cullonts:

(1) From given cullents

14=-15-19+10=16A.

Question 2 (15 pts)

Consider the circuit shown in the figure. The element "X" is a resistive element. The current through the 2Ω resistor is measured to be $i_0=3\cos t$ A.

- a) Determine the current i_x .
- b) Determine the power given to the element "X".
- c) Is the element "X" time invariant? Why?
- d) Is the element "X" passive? Why?

a)
$$i_{x} = i_{y} - i_{o} = \frac{12 - v_{o}}{3} - i_{o} = 4 - 5 \cos t A$$
.

Time-Varying: X is a resistive element, for DC input a time-invariant esistance would result in a DC valued concent and voltage.

Since this is not the case,

X is time-varying.

d) Active: A resistive element can not store energy; hence if Px(+)<0 It tor some (ix(+), ox(+)) poir then the component must be active Px(0) = -6 watts -> Component is

Question 3 (20 pts) Consider the following circuit.

- a) Obtain a mesh equation in matrix form.
- b) Solve this equation and find all the mesh currents.
- c) Calculate the power supplied or absorbed by the 4V source.

a) KVL around iy:
$$6iy + 3 + 3(iy + ix) = 0$$

KVL around superments: $3(ix + iy) + 4(ix - \frac{5}{2}) + 5(-\frac{1}{2} + ix - \frac{5}{2}) + 4 = 0$

$$\begin{bmatrix} 3 & | & 9 \\ 12 & | & 3 \end{bmatrix} \begin{bmatrix} ix \\ iy \end{bmatrix} = \begin{bmatrix} -3 \\ 21 \end{bmatrix}$$

$$\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} +2A \\ -1A \end{bmatrix}$$

c)
$$P_{4Y}^{absorbed} = 4V \times (i \times -\frac{1}{2}) = 4 \times \frac{3}{2} = 6W \text{ absorbed}$$

Question 4 (15 pts)

Find the input resistance Rin.

$$\frac{e}{2} + \frac{e-3ix}{2} + \frac{e-0}{3} = 0$$

$$\left(\frac{1}{2} + \frac{3}{2} + \frac{1}{3}\right) e = \frac{0_{\text{Test}}}{3} \rightarrow e = \frac{0_{\text{Test}}/3}{7/12}$$

$$e = \frac{0_{\text{Test}}/3}{7/12}$$

$$e = \frac{0_{\text{Test}}/3}{7/12}$$

$$T_{Tost} = -\frac{1}{4} \frac{1}{3} + \frac{1}{12} \frac{1}{3} + \frac{1}{12}$$

$$= \frac{2}{3} \frac{1}{12} \frac{1}{7} + \frac{2}{12} \frac{1}{7} + \frac{2}{12} \frac{1}{7}$$

$$= \frac{2}{3} \frac{1}{12} \frac{1}{7} + \frac{2}{12} \frac{1}{7} \frac{1}{7}$$

$$= \frac{2}{3} \frac{1}{12} \frac{1}{7} + \frac{2}{12} \frac{1}{7} \frac{1}{7} \frac{1}{7}$$

$$= \frac{1}{3} \frac{1}{12} \frac{1}{7} + \frac{1}{3} \frac{1}{7} \frac{1}{7} \frac{1}{7}$$

$$= \frac{1}{3} \frac{1}{12} \frac{1}{7} \frac{1$$

Question 5 (15 pts)

Consider the three circuits below.

Question 6 (20 pts) In the given circuit, transfer resistance r_m is in the range $(-\infty, \infty)$.

- a) Given $v_0 = 4V$, $r_m = 3/2 \Omega$, find R.
- b) r_m is so adjusted that $v_0 = 0$. Find this value of r_m .

$$\frac{1}{1} = \frac{4 - 4}{4}$$

$$\frac{4}{4}$$

$$\frac{1}{4} = \frac{4 - 4}{4}$$

$$\frac{1}{4} = \frac{2}{16}$$

$$\frac{1}{4} = \frac{1 - 3}{4} = \frac{28}{3}$$

$$e_1 = \frac{21}{4} = \frac{28}{3}$$

$$\frac{0-4ix+0-rmix}{4}=0$$

Solve for and ix From (I): IX = 10 A