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Exercise

In the previous chapter we have learned to perform systematically the nade
analysis of any linear time-invariant network, We have also learned to perform
the mesh. aralysis for any such network provided its graph is planar. In this chap-
ter we brigfly discuss two ganeralizations, or perhaps variations, of these methods,
namely, the cut-set analysis and the foop analysis. There ara two reasons for

. studying loop and cut-sst analysis: first, these methods are useful because they
ara much more flexible than mesh. and node analysis, and, second, they use con-

cepts and teach us points of view that areindispensable for.writing state equations.
In Sec. 1, we introduce some new graph-theoretic concepts and prove a funda-
mental theorem. In Sec. 2, we study loop analysis, and in Sec. 3 we study cut-set
analysis. Section 4 is devoted to comments oh these methods. In Sec. 5 we
establish a basi¢ relation betweeh the ioop matrix B and the cut-set matrix Q.

Fundamental Theorem of Graph Theory -~ -
In order to develop this theorem we need to indicate precisely what we
‘mean by a free. Let § be a connected graph and T'a subgraph of §. We
say that T'is a tree of the connected graph 8if (1) Tis a connected subgraph,
(2) it contains alf the nodes of §, and (3) it contains ne loops. o
Given a connected graph § and a tree 7, the branches of T" are called.
tree branches, and the branches of § not in T are cailéd links. (Some
authors call them cotree branches, or chords.) L .
A graph has usually many trees, In Fig. 1.1 we show a few trees ofa
connected graph 6. To help you understand the definition, in Fig. 1.2 we
- show a few subgraphs (of the same graph §) which are rot trees of &, To
emphasize the fact that complicated graphs have many trees, remember
that if a graph has n, nodes and has a single branch connecting every pair
of nodes, then it has n;»—2 trees.  For such graphs, when n, = 5, there are
125 trees; when ny = 10, there are 108 trees. _

Draw all possible trees for the graph shown in Fig. 1.3.
The following fundamental theorem relates the properties of loops, cut

sets and trees.
. 477
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3
2l X I8
: Fig. 1.3 A connected graph with four nedas and
8 - " six branches. .
Graph ¢ Tree Ty Tree T, Tree Ty Tree T, _ . o _
" Fig. 1.1 Examples of trees of mam: a . ’ .. and its incident tree branch. The remaining subgraph must still have
S at least two terminal Aodes. Let us continue removing terminal nodes
) o : and their incident tree branches until only one tree branch is left, This
-THEOREM  Given a connected graph § of n; nodes and b branches, and a tree T of § last branch is incident with two nodes. Thus, we have removed one
_.m. There is & uniqu th'al ) ] ! tree branch for every node except for the last branch which was con-
- que path along the tree between any pair of nodes. . nected with two nodes. Since there were n; nodes, T must have had
M .ﬂuo_.m are ny — 1 tree branches and b — ; + 1 links. . ‘N =1 wumanrnm.. Since all branches of § which are not in 7 are called
3. Every link of T and the unique tree path between its nodes constitute links, there are b — (4 — 1) = b — n, + | links.
© & unigue loop (this is called the fandamental loop associated wi : Consider a link /; which connects nodes (1) and (2). By part 1, there
fink wop with the el 4 . _ ¥ P ;
u. ) o - A R is a unique tree path between (1) and (2), This tree path, together
4. Every trée branch of T together with some links defines a unigue cut _ with the link Z;, constitutes a loop.. There cannot be any other loop
M““o oM 8. H_wa..nﬁ set is called a fundamental cut set associated with the - since the tpee had no loop to start with. : T
| Tanen. c : : .. Consider the branch by of T as shown in Fig. 1.4, - Remove by from 7.
: , i . , _ ' What remains of T'is then made up of two separate (connected) parts,
Froof 1. .M”mw%n Em”ﬁ““n. g_w mﬁwm along the tree between node (D and - say 73 and 7. Since every link connects a node of T'to another node
loop, the tree wotld commte o1 of these two paths would constitute a . of T, let us consider the set L of all the links that conpect a node’'of Ty
ofthe definiiion of s feoptain & loop. This contradicts requirement 3 . ~ " to anode of Tp. It is casily verified that the links in L, together with
| ratres. . : . : . the tree branch b,, constitute a cut set. All links not in L cannot con-
- 2. LetTbeatree of 9; then Tisa $ubgraph of 8 which connects all nodes, e tribute to another cut set since each one of them with a tree path in
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and it therefore has n, nodes, Ifa node of T has only one tree branch

incident with it, this node is called a terminal node of T, Since Tisa

connected subgraph which contains ng loops, it has at least two ter-
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. either Ty.or T2 constitutes a.loop.

The theorem can readily be extended to.the ‘case in which the graph

minal nodes, Let us remoye from the tree one of the terminal nodes consists of several separate parts, as shown in the following statement.

'COROLLARY  Suppose that § has _3 nodes, b branches, and s separate parts. Let T,
b T, ..., Ty be trees. of each ‘separate part, respectively. The set {73,
o Ts ..., Ty} is called a forest of 8. Then the forest has n; — 5 branches,
. ‘ o : . Cut set
: 8 L o ‘ o
Violates property (1)  Violates property (2) - _
_ ' Flg. 1.4  lllustraticn of properties of a fundamental cut set.

Flig. 1.2 Examples of subgraphs of 8 which are not trees.

1
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Shasb ~m + 5 links, and the Temaining statements of the théorem are
true. ’

Exercise Consider the graph § of Fig. 1.1. List all the fundamental loops and all

‘the fundamental cizt sets corresponding to tree T3, Repeat for trees T T,
and T, ’

! Laop Analysis .

21 TwoBasicFacts .. -~ . .. .- - R

Links 1, 2, 8, 4
Tree branches 5, 6, 7, §

Consider & connected mamvw.s._.& b branches and », nodes. ] ick an "Fig. 21 Fundamental locps for the chosen tree of.a graph.
arbitrary tree 7. There are n — ne — 1 trec.branches and { = & — n links, _ ) X . .n. b
Number the branches as follows: links first from 1 to J, tree branches next , ; tions in vy, ..., vy obtained by
from / 4 t 10 b, Every link defines a fundamental loop, i.e,, the loop - The .. linear \.‘23o.wmm;mm.ﬁmww“m”wHWEMW&ME:.EE nr.?.u of 1 linearly inde-
formed by the link and the unique tree path between the nodes of that link, . nhuw Ewm%._ ﬂwoﬂqmn . : — '
This is illustrated in Fig. 2.1 in terms of a simple graph with b = 8, , = 5, - penden e ’ e : .
n=4 and /= 4 ; . prE . . __ : If we recall the convention that the reference direction of Eno_muwccwm_mm““
In order to apply KVL to each fundamenta] loop we adopt 4 reference - with that of the link whick defines it, we see that the system n_
direction for the loop which agrees with the refefence direction of the link - o obtained from KVL is of the form
which defines that fundamental loop. This is shown in Fig, 2.1; for ex- s 21) Bve=0 . . .
ample, fundamentsl loop I has the same orientation as ink 1, etc, The @21 V= L . 0op mairix. Further-
KVL equations can be written for the four fundamenta] loops in terms of " where B is an 7 X b matrix called the _.._.5%5.38_ loop matrix. Fu
the branch voltage as follows: : o _ ! more, its. (7,k)th element is defined as follows: .
Loop i oy —p5 4 pgmg : R T I ifbranch ks in loop ¢ and their reference dircctions agree
Loop 2: V2t Us —ug o +ug =0 S - @R b= -1 if branch k is in loop / and :.ﬁ:. reference &Hon_.uonm do no ]
LOOP 3 oy — vy 4 oy 4 5y = 0 _ - _  agree L :
. _ . ) o : . . i k is not in loop i - o .
Loopd:  p; — 4 4 v =10 - ) . 0  ifbranch . , .
. . _ : . . i enta-
In matrix form, the equation gives : : - Since cach fundamental loop includes one link only and since the ori

ir i itis clear thatif we
i loop and the link are picked to be the same, i _
”ﬂﬂmﬁﬁw r.nmm 1,2,...,/and the tree branches/ + 1,7+ 2, .. X b, En,

. Bl o . mourix B has the form
L0 0o <1 t o ¢l{ul [o o i w
. i - 1 F {loops .
" 0100 I -1 1 Tiley 0 . @3 B F“{ .
ops ([ S = . ' i
) {links . n tree
AL B B 8 1 P9 ' - " branches . o aneul
Q00 0 -1 ! .0 o 0 here 1, designates a unit matrix of order / and F designates a rectangu mw_.
!links 7 tes branches [ po | : Hwﬁx LQ rows and n columas. It is obvious that the rank of Bis /, mE_Mndm
_ 5 g : includes the unit matrix 1, and Kas only / rows. Therefore, we ha

established the fact that the / fundamental loop equations written in terms

More generally, if we-apply the' KVL to each one of the / fundamental ' of the branch vollages constitute a set of /nearly independent equations.

loops, we obtain a system of / linear algebraic equations in & unknowns
102, - . .ty . The first hasic fact of loop analysis isas follows:




Exarcise

(2.4)

(2.5

(2.6).

Jr= M Caty
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For the graph bf H.umm. 2.1, consider a Ro_u E that is not a fundamental loop.
Show that KVL applied to loop £ gives an equation which depends linearly
on the / equations based on the fandamental loops. _—

Turning now to KCL, we note that KCL implies that any current that
comes to & node must leave this node; therefore, we may think of the
branch currents as having been formed by currents around loops. Call
#1, 82, ..., f; the currents in the ] links of the free-T. We imagine each of
these currents flowing in its respective fundamental loop; thus, each tree
‘branch current is the superposition of one or more loop currents. More
precisely, we assert that L : o ’

j=Bn

where. BT is the transpose of the fundamental loop matrix. To prove
Eq. (24), let us write it in the form | = Ci, where C is the appropriate
matrix of & rows‘and / columns which mekes the equation true. We wish
to show that C = B". Let us consider the branch currents: For those
branches which are links of the given tree, the link cutrents are idéntical
to the fundamental loop currents; that is, - . .

W"—».N......uw i
The remaining branches belong to the tiee; hénce they are tree branches.

Each tree-branch current is & linear combination of the fundamental loop
currents. - More specifically, the. kth branch current can be written as

=i

k=l41,14+2.. .5

i=1 - : . .

_ where ey is given by the following equation:

en e

238)

"1 ifbranch kis ini loop 7 and their reference directions agree

em = {—1  ifbranch kisin loop i and their reference directions do not
| ..agree Coe
0 . if branch k+is not in loop &

It is obvious that Eq. (2.7) considérs all branches, since for a link, branch
% is only in loop k, and their reference directions coincide; hence, as in
Eq.(2.5).alley = 1. Comparing Eq. (2.7) with Eq. (2.2), we conclude that
€kt = byy; hence, the matrix C = (ca) as specified by j = Ci is the trans-
pose of B; that is, C = BT, If we partition the matrix BT in Eq. (2.4) ac-
cording to whether a branch is a link or a tree branch, we obtain

j=BT H _,.uhu__ _

This equation will be useful for later mﬁﬁ:nmzouw...

m..._.:.n:mqw.

Exercise 1

Exercise 2 .

.

" Exercise 3

Thl [1. 0. 0 0]

| fe.

Sac, 2 _..oov Analysis 483

Let us consider our example of Fig. 2.1, We can write the following
equations according to Eq. (2.7): - o

h=h
Je=iz
Ja= 1
Ja= g

faizm ~h+ia

Je=i —is— iz — iy
Jr=la+is+ig

Jas=igt iy

In matrix form the equation is

2l ] 0
Js

Js -
Ja .
Jr
js

KVL is expressed by By = 0, and KCL by | = B7i where i is the loop cur-
rent vector. As a result of our choice of reference directions, the funda-
mental loop matrix B is of the form (2.3). Thesc cquations are valid irre-
spective of the nature of the branches.

0
1
0
1

—1
1
i

—_ -0 O - o

0
0
1
0l
-1
1
.0

= - =

Prove Tellegen’s theorem by using Eqs. (2.1) and 2.4).

Consider the graph § of Fig. 1.1. . Assign reference directions to each -
branch. . Determine B for the tree 75, )

Mesh analysis isnot always a special case of loop analysis; give an example
of a'special case. (Hint: This will be the case if for each mesh current there

* " is anc branch that is traversed by only that mesh current,)

‘2.2

Loop Anaiysis for Linear Time-invariant Networks

In this section we shall.restrict our consideration to linear nn-n.mnwwawun
networks. We shall introduce branch equations and obtain by elimination



2.9

(2.10)
@11

2.12)

)
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{ linear network equations in terms of the / fundamental loop currents,

- For simplicity, we shall consider networks with resistors. The extension

to the general-case is exactly the same as the generalization discussed in
Chap. 10. ) ’

The branch equations are written in matrix form as follows: -
4”a+¢ulau.. MW{.....O
As before, R is a diagonal branch resistance matrix of dimension b, and

.

v, and j,.are voltage source and current source vectors, respectively.

Combining Egs. (2.1), (2.8), and (2.9), we obtain
BRB7 = —By, 4 BRj, .

or ’ .

Zi=e,

where .

Z. 2 BRBT o 4 _py, 4 BR;,

Z,;is called the loop impedance matrix of order 1, and e, is the loop voltage
source vector. The loop impedance matrix has properties similar to those
of the mesh impedance matrix discussed in the previous chapter. The
matrix Z;is symmetric. This is immediately seen once it is observed that in
Eq. (212) R is a symmetric matrix. Let us rewrite Eqg. (2.11) as follows:

2y Zz ... zZupi & €51

Zgy Zpa .. Zn) u.n [

Zn Zm ...zl & " e

\
-

~ Example

Let us consider the network of Fig. 2.2, The graph of the metivork is that

of Fig. 2.1; hence the fundamental loop matrix has been obtained before.

The branch equation is . :
[0 ] Tau - o _- C“H Tﬂ. _|

O.
vy’ R o |lr{ |o 0
vs | "Ry S sl Lol ] o
va | - : Ry (] 0 RY
b5 . Rs . /s + o™ 1]
vg o . . Rs Ja of 0
b ; Ry 15 0| o
-cmu_ ] _ Y, ' xmu -bﬁ_ |0 | . | Ryfas |-

Flg. 2.2
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Exampla of loop analysis.”

Using mg (2.12), we can obtain the loop guoamnoo. matrix
Z, = BRBT

Ry+ Rs+Rg —Rs—Rg ~-Ry - Ry
"=R3i—Rg .xw+hw+bm+hq+hw Rg+Rr4 Ry . Rg+ Ry
= - Rg . R+ Ryt Ry Nu+ha+.xq+.hm .. Ra+ R
~Rq Re+ Ry Re+Rr  “Re+Re+Rq
. The loop equations are . - -
[Ri#Rs+Rs  ~Rs—Rs —Rq . ~Ra
—Rs—Rs Rp+Rs+Rat+R:+Rs Re+Ri+Rs Rg+ Ry
. ~Rs . Rg+Rr+Rg h«+%a+m.q.+,§ Rg+Rq
—Re Ra+ Re Rg+ Ry .w.,.__..hm+hw.
o . . . 1.5 —Up
fa K |-m&~w
ia| = | - Rejse
i 0

] _Exercise

2«5&9& the network shown in Fig, 2.2 is in the sinusoidal steady state _
and that its kth branch has an impedance Zy(jw). In terms of phasors,
write the loop equations corresponding to the given trae.

et

(Priiorties of the Loop Impedance Matdx "~
It is clear that the analysis of a resistive network and sinusoidal steady-

~ _ state analysis of a similar network are very closely related. The main

differenceé is in the appearance of phasors and impedances,

4
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The following properties of the loop impedance matrix Zi(jw) follow
from the relation

Zy(ju) = BZy(ju)BT

1. If the network has no SEEEm elements, the _unmno_u E%nambon :

matrix Zy(jw) is -diagonal, and the Ho% _Eﬁmmmﬂnn matrix is
. .muébanﬁn

2. uﬁmo. if the network has no noamrnm elements, En _ocﬂ impedance

~matrix Zy(jw) can be written by inspection. -

a. The ith diaponal element of Zyjw), 24, is equal to the sum of the
impedances in loop #; zy is called the self-impedance of loop /.

b. The (1)) element of Zy( ju), 24, is equal to plus or minus the sum
of the impedances of the branclies common toloop { and to loop k;
the plus sign applies if, in the branches common to Hoou iand

" loop &, the loop zeference directions agree, and the _..Enﬂm sign
mﬁ_ura ‘when they are opposite.

3, If ail current sources are converted, 3 q.u?ﬂ:n ] EnoHoE. into
voltage sources, then the forcing ﬁn_.B mz is the Emo_uaﬁn sum of all the
_source voltages in loop 4.

4. If the network is resistive and if mm_:m resistances are vom::‘o &nﬂ.

det ANQ >0
ﬁﬁs in a few sentences Eo Bnonz..“rooancn Snmnmnnnoaa of property 4.

Give an. nxmaﬂ_n of a linear time-invariant network made of passive n_or

.ments such that for some tree and some frequency wp, nﬁ HNHQE&H =40
. Can you give an example which includes a resistor? =

{  Ifithe network of Fig. 2.2, pick the tree ooum_mﬁﬁm om .E.E._n&aw 1,2,3,and a
. “Write the Toop anﬂﬁ_oa by Em@gﬂnn ;

Qﬁ..mﬂ E.maaa is the. n_E: om uoov Epﬂuﬁm,_ m:.m” we m._nw a tree; nmu it u.._. .
- Neéxt we number branclies; as before, the Bisks from range 1 to /, and the
know. that every tree branch

tree ?.wnn_uom umbbm.m from'F+ 1 to b, - We

-

definds (for the given froe) & unique fundamental eut set.. - That cnt set is

made up of liriks and 6f one free branch, namély the tree branch which
defines the cut set. In _H.Lm. 3.1 we show_ the same graph ¢ and the same -
tree T as in the previous section, The qu. ?uamBnbE cut sets are mw_u :

mwoﬂn

fig. 3.1

Sec. 3 Cut-set Analysis  4B7

Cut set 1 (defined by
tree branch 5)

Cut get 2
Cut set'3

Cut gset 4 —

Fundamental cut sets for the chosen trée of a glven graph.

Let us number the cut sets as follows: cut set 1 is associated with tree
branch §, cut set 2 with tree branch'6, etc. By analogy to previous con-
ventions, for each fundamental cut sct we adopt a reference direction for
the cut set which agreés with that of the tree branch defining the cut set,
Under E&n conditions, if we nBu_w KCL 10 the four cut mn_r im o_uBE )

Cut set ma Lmu. l1.wm +.~w =. O

.__l\.a[ .wi.\ +.\qlc
|&n lm»+‘.a [
Fﬂnﬁw woﬂ:. En oe._h:o: is -

o ......mun. -
A
Ja
| Ja
Js
|
ERA
: | Js)

goan m«wnnm,:w. if we mEu_w KCLto nmnw one of the » ?uam.aonﬁ cut
seis, we dbtain a system of n linear roEomnunoE equations in # unknowns’

b,?..b;mmnﬁgmo nwouomqnfmﬂ gﬁua_m 5 mﬁﬂﬂwnnna En.:w
mo:csaum statement: . .

- o oo ..

Toa e e

o oo .
R




(3.

(3.2

(3.3).

(3.9)
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The n linear homogeneous algebraic maxn:gq i ji, fay -+ vy jo obtained by
applying KCL to each fupdamental cut ser constitute a set of n linearly in-
dependent equations.

Wnamnsm the convention of sign h.E. cut sats, we see that :.6 KCL equa-
tions are of the form

Q=0
where Q is an 7 X & matrix defined by

1 . if branch & belongs to cut set (7) and wmm the same refer-
ence direction

R_uamnnr» c&cnmm Snﬁmaﬂ @ wpa_._mm En &&waam
reference direction :

0  if branch k does nor belong t6 nE set (7)

Q = [gi] is called the fundamental cut-set matrix. As wnwo_.m we note that
it is of the form

OHH E m/_a ] ncutsets
flinks  nree .
branches

where E is an mvm_.ownﬁn n X { matrix with elements —1, +1, 0, and _
is the 1 X » unit matrix: Obviously, Q has a rank » since it includes the
unit matrix 1, Hence, the n fundamental cut-set equations in ﬁﬂdm of
the branch currents are linearly independent. -

Turning now to KVE, we note that each branch <o=mmn can be ex-
pressed as a linear combination of the tree-branch voltages. For con-

‘venience, let us label the tree-branch voltages by ei, €2,...,¢, For the .
_example in Fig. 3.1, from KVL we oEmE the following nmbmscum.

=i —lg=eo-—e
Vg = —Us + U — Uy — Ug
Ug=1Dg— Uy —'Ug = €3 — g3 — ey

by =g~y =€ — ey

ﬂ.lmp+mu.l.mm|mn N

Uy =&

Vg = €2 .o

0 = €3 - . . .
Y= €4 | .

By wo:ogum the _.nmmou_nm dual to that of En loop mnm_wm_m' we can
prove the mmmn_.:on of the second basic fact, namely

=QTe . .
that is, the branch voltage vector is obtained by forming the E.oa:ﬁ S, En
cut-set matfix rransposed and the tree-branch <o:_~mn veotor.

Summary

mwo..nmmw 1

Exercise 2

(3.6)

3.7

@5

@&
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KCL requires that Qj = 0- KVL is expressed by v = QTe. As a result
of our numbering convention, the fundamental cut-set matrix Q is of the

form of (3.3). These equations are valid irrespective of the nature of the

branches.
Prove Tellegen’s theorem by using mhm. hw 1) and (3.4).
Node »n&wm_w is not always a special case of cut-set analysis. Give an

example of such a non-special case.

o:» uo" >=u_§_u for Linear ._._ao._-_ﬁ:na z&io_._a
In cut-set mﬁ&wﬁm KirchhofP’s laws are nxv_dwmnn 5 [see G d and (3. &_

Qi= . _

Y= On.m ]

These equations are combined with branch" equations to form network
equations with the n tree-branch <o=»mam 1, €200, €n as network-
variables.

For the case of linear time-invariant resistive nu?__onwm the branch
equations are easily written in matrix form. Let us illustrate the proce--
dure with a resistive network. The Eﬁnn: equations are written in matrix
form as follows:
i=Gv+j— G, _

As before, G is the diagonal branch conductance matrix of dimension b
and j, and v, are the source vectors. QBEEH_W Eqgs. (3.1), (3.4), and (3.5),
we ovSE ) ) .
QGQ’e = QGv, — Qj, A
or . o

Ye=1i,
where : .

4 r i 4
Y, = Q6Q i, = QGv, — Qj,
Y, is called the cui-set »__E_Ew:nm matrix, E.E i, i5 the ent-set current

source vector. ;
In scalar form, the cut-set equations are -

M1 Yz ... Yumfjer| =|ia
X Yae .. Yea|lex isp

Yr1 Yaz .- Vami|€a | isn
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Properties of the Cut-sét Admittance Matrix . ' R T
As before, we note that for sinusoidal steady-state analysis the cut-get

admittance matrix Y, has a number of properties based on the equation

Yo(jo) = Q¥%(jw)QT

"1, If the network has no coupling elements, the branch admittance

2, If there are no coupling clements,

matrix Ys(jw) is diagonal, and Y,(jw) is symmetric,
a. The ith diagonal element of Yo(je), yu(jw) is oe..w_ to the sum of
" the admittances of the branches of the ith cut set. _

b. The (i,k) element of Y,(juw), yu(jw), is equal to the sum of all the
~ sdmittances of branches common to cut set { and cut set k when,

in the branches common. to. their two cut sets, their reference '

directions agree; otherwise, yu is the negative of that sum.

. 3. Ifall the voltage sources are transformed to current sources, then / is

the total current-source contribution to cut set k.

4. If the network is resistive and if afl branch _.n&mpumﬂnnm are positive,

then det (Y} > 0. e

Example

Flg. 3.2

Consider the resistive network shown in Fig. 3.2. The cut-set equations

are . .
66 & Ge o] [ 6om
|lenu.
G + G
Gt + s + Gy

Gy + 62 + Gs®

G uly Gi+Ge+GitrGut+ G
¥ ~Gy— G5 — G
Gy . —G; - Gy

2
1
3

-Gy = Ga — G
Go+ Gz + Gy + Gr
Ga+Gs

&
=]

>
-

Example of cut-set analysis.
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d ciif-sef an: start with-chtiosing a tree for the '
-wumber-of pessiblg trees for a graph is usually

large, the two methods are extremely flexible. It is obvious that they are
more gerieral than the mesh-analysis and node analysis. For example,

. consider the graph-of Fig, 4.1, where the chosen tree is shown by the em-
- phasized branches. . The furidamental loops for the particuler tree coincide

- with the four meshes of the graph. Thus, the mesh currents are identical -
with the fundamental loop currents. Similarly, as shown in Fig. 4.2, the

fundamental cut sets for the particular tree coincide with the sefs of -

branches connected. to nodes (D, @, (@), and @. If node.B is’
picked as the datum node, the tree-branch voltages are identical with the
node-to-datum voltages. Thus, mesh analysis and node analysis for this

. particular example are special cases of the loop analysis and cut-set anai- °
ysis. However, it should be pointed out that for the graph of Fig. 4.3, the
meshes are not special cases of fundamental loops; i.e., there exists no tree
such that the five meshes are fundamental loops. Similarly, in Fig. 4.2, if
node (@) is picked as datum node, there exists no tree which gives tree-
branch volfages identical to the node-to-datum voltages. ,

- As far as the relative advantages of cut-set analysis and loop analysis,
the conclusion is the same as that between mesh analysis and node anal-
ysis. Itdepends on the graph as well as on the kind and number of sources

_ in the network.  For example, if the number of tree branches, », is much

. smaller than the number- of.links, J, the cut-set method is usually more
efficient. . . . -

It is important to keep in mind the duality smong the concepts pertain-

~ ing to general networks and graphs. Table 10:1 of Chap. 10 should-be

studied again at this juncture, Whereas in our first study, duality applied

Flg: 4.1 Fundamental losps for the n.__umo:..mmm
are identical with meshes.
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Fig. 4.2  The four fundamentsi cut sets for the chosen tree

Fig. 4.3.

coincide with the set of branches connected to

,.aon_ow@ @ 3, and @,

‘only to planaf anﬁwm and EE.S_. networks and we nwoamrﬂ in texms of node
and mesh analysis, it is now apparent that duality extends to concepts per-
taining to nonplanar graphs and networks; for example. cut sets and loops

are dual concepts. The entries of Table 10.] of Or
fully considered. .  op. 10 should be care-

A graph showing that meshes. are not special
cases of fundamental loops.
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mm“mzc: Between B .and @

If we start with an oriented graph § and ﬁﬁw any one Om its trees, say u. and
if- we write the fundamental loop matrix B and the fundamental cut-sat

~matrix Q, we should expect to find a very close connection between these
matrices. After all, B tells us which branch is in which fundamental loop,
and Q tells us which branch is in which fundamental cut set. The precise
relation between B and Q is stated in the following theorem.,

' Call B the fundamental loop matrix and Q the fandamental cut-set matrix
of the same oriented 6, and let both matrices pertain to the same tree 7'
then

BQT=0 and. QBT =0 . ’ -k
Furthermore, if we number the links from 1 10 / and number the tree
‘branches from 7 + ] to b, then . .

_Hr_i ad Q= T

wana proving these facts, let us see what the first Eq. G 1)means. This
equation tells us that the product of the £ & matrix B and the b X n

Frl L _

. matrix QT is the 7 % n zero matrix. In other words, the Huuoacn« of every

row of B and every column of QT is zero. The second Eq. (5.1) is simply

the first one transposed: the ?.oa:ﬂ of every row om O by ncmnw colurnu of

_w.... is zero.” : :
Let the components of the vector e = [e1, ea, . . ., e,]T be arbitrary. Since

they are the tree-branch voltages of the tree 7, z._o branch <o=mmnm of § are

given: by

v=0Q%

In other words, whatever the n-vector e may be, this equation gives us a
set of b branch voltages that satisfies KVL. On the other hand, anyt time,
“a set'of branch vollages u, mmnmmnm KVL, we w_men

Bv=0
(that is. these ez's satisfy KVL alonig alt the ?:amanna _oommu mc__u-
mcEnum v, we ob’ain

Wo.u.n =

‘Note very nn_d?:u, that this equation means that given any n-vector e, if
we multiply it on the ieft by BQ7, we get the 2ero vector! Observe that
the product BQ7 is an { X # matrix. This means that whenever we multi-
ply muﬂaénﬂon e by BQT, we get the zero vector. For example if we
choosee=¢; = : 0.0,...,0]7, BQTe, is easily seen to be the first col-

for all e




. (5.4)
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umn of BQ7; &goﬂ the first ooEEu of BQT is a column of zeros. Sim-
ilarly, if we choose e = ¢; £ [0, 1, O, . » 0], we sec that the second
column of BQT is a column of zeros, mua mo forth. Therefore, Eq. (5.3)
implies that the matrix BQ? has all its elements equal to zero. Therefore,
Egs. (5.1) are established. ao second equation is simply the first oné
transposed.)

To prove (5.2), let us Hnnwm that we Euﬂom EE Q was om the form

e=[z|u]

A.rs.nwo_.n.

=B

GmEm the fact thata E.oncﬁ of matrices is vmnmoq..ﬂan as rows by columns
and uo:nm that L, has the same number of columns as ET has TOWS, wWe
conclude that

BQT=LET + Fl, = ET+ F =0

Hence,

Ef= _F
and s_.mnm_uomsm.
. —w = I..—....u.

Using this ooso_nmﬂou into _,.m 3. we see that

Q= [-F| L] -

Thus, the proof is 851...8

The relation between B and Q expressed 5 (5.2) is oxﬁoanq usefit]

- - since it means that whenever we know one of these matrices, we can write

Exercisa u

- Exerclse 2

EnoEnHosn_uw_Evnonon.oﬁncnnwnnoa.ao&_smﬁonm w m_a Omno.
uniquely m_uuemoa .cw En { % nmatrix F, : _

’ <ﬂ.~@ that wOa = 0 for the graph of Fig. 3. _

Prove Eo. first equation (5. C by _.nmmq:ﬁm to the anmﬂEoE of w and O
Note that En Q 3 &nansﬂ om wou. is of the form

M @&a 955 + Qfabzré

Bwﬂ.mm, the sum rmu w0 nonzero terms.

: m_.__.z___._ma__ . Am_m.

In both the loop analysis and the cut-set analysis we first pick.a tree and -
number all branches. For convenience, we number the links first’ from"
! to / and number the trée branches from / + 1to0 b Then we Eﬁm:

branch orientations.

. Inloop analysis we use the fundamental loop currents iy, ig, : : . iy 2s nef-

work variables. ‘We write / linearly independent algebraic equationsin’
terms of branch _Wocmmnm by applying KVL for each fundamental loop.
In linear time-ifivariant networks, taking the’ branch equations into
account, the / equations can be put explicitlyin terms of the / fundamental

" loop currents. In general, the resulting network equations no_.B Pmm.ﬁnﬂ

of I Eﬁmﬂo&mﬂgam_ equatipns, in matrix form,

Z{Di= e,

The solution a. this systemn of linear _Eomnoa&,m_.on:& ap:u#cum will be

treated in sicceeding chapters. Once the fondamental loop currents i
-are determined, the branch currents can be found immediately from

j=B% - (KCL) , - .
The b branch voltages are then o_uﬁ.m,.mbmga from the b branch equations.

. The cut-sct mnﬁuﬁm is the dual of the loop analysis, The n tree-branch

voltages ey, ez, . . ., €, are used as network variables, and # linearly inde-
pendent equations in terms of hranch cufrents are writien by applying

KCL for all the fundamental cut sets associated with the tree. In linear

time-invariant networks the » equations’can be put explicitly in terms of
the » tree-branch <o:»mnu In general, the Ha_bcnm matrix nmﬁﬁoﬁ is

*ﬂAbVﬂ -~ —ﬁ . . 5 X ._

Once € is maﬁﬂBEnu En b c_.»nnr 4&5@2 can vn wocua _.BERE:&%
from )

V= Oq.o QAS..H. T 3

The b branch currents are then obtainable from the b branch equations:

Given any otiented graph 6 and any of its trees, the resulting fundamental
moo_u matrix B and thé fundamental cut-set matrix Q dre wﬁnw Emﬂ

woq = and QBT = ¢
m.n:wnnﬁcan. .

ﬂ@__ s onfom |4y
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P 2

f ~w The, wﬂ&om_nm wnﬂﬂann Eo ?:gmgoam of analysis deserve 8 _uo\“
. o

¥ nEﬁwmuﬁna ) . . e

s

o

Yol jo) = >5.Q£>a for, h;a analysis -
. Zm(j0) = MZy(j)MT _£6r mesh E._&w&m
s .._Cavl OSC&Q,\\ for cut-set - acialysis
N.,GQ wm“.@ for Joop’ mnmaa_m e

Y,mmnw one o\m & “connectiop” matrices A, M, @, and B is of mm,; rank.
iz o

_vqoc_mam

._.Sa_naum.ouga o:nﬁna m_.mm& m:cﬁna 1_m m.:_wa_.o_.ﬁmqmnﬁ&nwﬁm
ets, and :
) _nwﬂm @. Indicate gll the fundamental loops and the fundamental cut sets.

b. Write all the fundamental loop and cut-set equations.
¢. Can you find a tree such that all its fundamental loops are Enmwnmq

Fig. P11.1

Loop analysis 2. Your roommate analyzed a number of passive linear time-invariant
RLC circuits. He found the loop impedance matrices given below.
‘Which. ones. do you accept as correct? Give your reasons for rejecting

any.

a [3 2 ~1 2 i 2] - -
|25 {24 |23

b [3+j =2 3 - 5.

-% 5+TF |-j 2 6j B+3
Loop u:m_ﬁa 3. The linear time-invariant network of Fig. P11.34, having a (topological)

- graph shown in Fig, P11.3b, is in the sinusoidal steady state. From the
:Suo_amamc graph a tree is picked as shown in Fig. P11.3¢.

Problems 497
= 2 mhos
= 2F
=1F
4 H
3 H
10
2 .
3 gin 2¢ amp

: ] . Aav Co . i

Fig. P113 . :

a. Write the fundamental loop matrix B.
&. Calculate the loop impedance matrix Z,, -

¢. Write the loop equations in terms of voltage and current m_pwmoa.
: that is, Z;l = E,.

Loop analysis 4. Assnme that the linear time-invariant network of Fig. P11.3 is in the
: sinusoidal steady state. Write the fundamental loop equations for the

- tree indicated by the shortcut method. (First assume that the dependent

current source is independent, and E:.on_:nm its dependence in the last

step.)

" Loopanalysis 5. The linear time-invariant uo:aon.w shown in Fig. w: .5 is in the sinusoi-

dal steady state. Fot the reference directions indicated -on the inductors,
the inductance matrix is

4 21
2 4 2
12 4

Write the fundamental loop equation for a tree of your choice.
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Hh ja- cutsetand 8. For a given connected Bn?...oww_ and for a fixed tree, the fundamental .

|_| oY u‘u lop matrix  Joop matrix is given-by

. : 1 0 ¢ 1 0 0

c v C B . -

| ﬁ_ﬂy m\_; A0 © B={0 1 0 0o o -
— — B - 6 0 1- 1 -1 -]

g

..mn. P1LS a. ﬁmﬂa. by inspection, the fundamental cut-set matrix which corre-
. o _. : : - sponds to the same tree.
Cutset 6. Consider the linear time-invariant network shown in Fig. P11.3a. . b. Draw the orienfed graph of the network.
analysis  Suppose.it is in the sinusoidal steady state, Consider the tree shown in - it - &ap

Fig. P11.3c. .

4. Write the fundamental cut-set matriz Q.
b. Calculate the cut-set admittance matrix Y,
¢. Wiite the cut-set equations in terms of the cut-set voltage and source
current phasors; that is, Y, E = L. : )
Cutset 7. The linear time-invariant network shown in Fig, P11.7 is in the sinusoi-
analysis  dal steady state. 1t originates from delay-line designs; each inductor is
. coupled to its neighbor and to his neighbor(s) once removed, and the
‘bridging capacitors compensate the coupling of the neighbors onge re- : :
moved. The coupling between inductors is specified by the reciprocal : : -
inductance matrix =~ - - - . : . -
T: 1 H.a. ) F. 1 HJ» . : ) ’ ’
Iy Ty To Iy
. 0 T It Te
Pick a tree such that the corrésponding cut-set equations-are easy to write.
Write these qut-sct equations.. * )

T=

.QH y | ..nH . .
H L jg L b L i L
ig 64 1 2 . 3 1 nm..
m" -~ C \—10 \_IQ \._)0 c= .u" .
1. i -

AR PILT - - . S S . A . :




