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Abstract- Distinguishability of a discrete coil induced current electrical impedance tomography system is analyzed.
The solution methodology of the forward problem of this system is explained. An optimization procedure using this
forward problem solution is developed to find optimum currents that maximize the distinguishability. For concentric
inhomogeneity problem, it is shown that the coil currents can be optimized to focus the current density in any desired
location, in the field of view. Optimum coil currents under limited peak coil currents constraint and limited total power
constraint are determined. Examples that demonstrate the performance of the system are presented.
Key Words: Electrical Impedance Tomography, Magnetic Impedance Tomography, Distinguishability, Induced
Current, Discrete Coil

I.  INTRODUCTION
Electrical Impedance Tomography (EIT) is an imaging technique, first employed in geophysical imaging, later
developed as a medical imaging modality within the last twenty years (Boone et al (1997), Rigaud and Morucci
(1996)). In EIT, images of the absolute conductivity distribution or variations in conductivity distribution are
reconstructed, based on electrical measurements performed on the surface of the conducting region. In the case of
injected current EIT, current is injected through 16-32 electrodes and measurement of voltage along the boundary of
the object are used to reconstruct the conductivity image. Induced current EIT (Scaife et al (1990), Purvis et al (1993),
Healey et al (1993), Freeston and Tozer (1995), Gençer (1993), Gençer and Ýder (1994), Gençer et al (1996)) works
with similar principles, the main difference being the induction of the current using a coil(s) located outside the object.
Seagar (1983), Seagar and Bates (1984), and Seagar et al (1987) analyzed the systems’ sensitivity required for
detection of a given inhomogeneity for a single drive injected current EIT. A similar study was performed by
Anderson et al (1995) for the continuous coil induced current EIT systems. Distinguishability of an EIT system is
defined by Isaacson (1986) as the system’s ability to detect conductivity difference of an inhomogeneity from the
background. How well the system is able to do so is mathematically expressed as the norm of the difference of
potential at the boundary for the cases where the inhomogeneity is and is not present. Current patterns that maximize
the distinguishability of a concentric inhomogeneity are studied in under several constraints for the injected current
EIT (Isaacson (1986), Cheney and Isaacson (1992)). Later, the effect of constraints on the distinguishability
performance of the system is studied in (Eyüboðlu and Pilkington (1993)), where it is shown that while cosine drive is
better under constant power constraint, opposite drive has a better distinguishability when the total current injected to
the object is kept constant. Opposite drive has been shown to be actually the best under constant injected current
constraint using an optimization procedure (Köksal and Eyüboðlu  (1995)).
The scope of this paper is to extend the distinguishability concept defined by Isaacson (1986) for concentric objects in
injected current EIT systems to discrete coil induced current EIT systems. Another goal is to obtain optimum coil
currents under different constraints on coil currents. Section 2 summarizes the distinguishability analysis and
optimization method. Section 3 gives some examples of forward analysis and of distinguishability optimization under
two different constraints. Conclusions and future work are given in Section 4.

II. METHOD OF ANALYSIS
In EIT, independent measurements are obtained by changing the positions of the current injection electrodes or by
changing the location of the coil. In the case of injected current EIT, an optimum current density may be created by
injecting varying amounts of current through several pairs of electrodes (Isaacson (1986), Cheney and Isaacson
(1992)). With a similar approach, induced current in the object can be controlled efficiently using the discrete coil
configuration having fixed location as shown in Fig. 1 and by changing the individual coil currents.
The problem shown in Fig.1 can be solved easily using quasi-static assumption and by neglecting the displacement
field in the object. Typical operating frequencies of EIT systems and the nature of conductivity distributions in living
bodies in this frequency range justifies this assumption. A detailed formulation of the solution for a single coil case is
given in (Gençer (1993)). The concentric inhomogeneity problem can be solved analytically using a quasi-static
approximation. According to this approximation, coil currents produce a magnetic field which induces an electric field
in the object, however, the contribution of this induced electric field to the total magnetic field is negligible. The
second approximation used is both related to the frequency of operation and electrical properties of the object and of
inhomogeneity. In the frequency regime of EIT, dielectric properties of objects are much less important than their
conductor properties (σ>>ωε), and hence the displacement currents are neglected.
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If one calculates the magnetic vector potential, A, for the coil excitation, under the given assumptions, the solution for
potential Φ is readily expressed in terms of the Fourier coefficients of  An. Calculation of An(Ri(θ)) for any angular
section of discrete coils is carried out using numerical integration and the calculation for the segments extending to
infinity is carried out analytically. Thus in the solution of the forward problem, first An is calculated at the boundaries
of the problem and its truncated Fourier series with desired accuracy (less than 1% error) is found. The Fourier
coefficients Cm, Dm, Em, Fm of An at the two boundaries are sufficient to determine the solution of the forward
problem.
For the distinguishability analysis, consider the problem shown in Fig.1 and choose σ2=1, R2=1, and σ1=σ, R1=R. Let
V2(θ) and V1(θ) denote the solutions for potential at the outer boundary R2=1 for the cases where the inhomogeneity is
and is not present, respectively. L2 norm of the difference between the voltages V2(θ) and V1(θ), denoted by ||Vd (θ)||,
is the distinguishability measure defined by Isaacson  (1986). The distinguishability function  is obtained in terms of
aforementioned potential solutions and Fourier coefficients of An as:

When this potential difference is larger than the measurement precision, the inhomogenity causing that difference is
distinguishable. This defines the theoretical limit under a finite measurement precision and there are several other
limitations due to reconstruction of the images from the measured data. An object may be distiguishable based on the
criteria used in this work may not be identifiable in the reconstructed image.
Optimum (or best) currents are those which maximize the distinguishability measure defined earlier. The solution of
this problem is in a form similar to the solution of the forward problem, but here the unknowns are the coil currents.
An optimization procedure for the currents is developed to optimize ||Vd(θ)|| under two different constraints. In the
first constraint, the coil current amplitudes are confined in an interval, i.e. | Ij | ≤ 1. This is equivalent to limiting the
maximum current density in the object. In the second constraint, L2 norm of the coil currents vector is chosen as unity,
i.e. norm(I)=1. This is equivalent to keeping the power supplied by the coils constant.
The optimization problem is solved by defining every parameter related in matrix form. The forward problem solution
is obtained in the same manner, the main difference being is that the currents are known in the forward problem. The
modular structure of the analysis method enables to use the same analysis data for different coil currents.

III. RESULTS
The six coil system of Figure 1 is used for the examples given and concentric inhomogeneity case is investigated.
Operating frequency of the system is assumed as f=50 kHz. In all the cases investigated, it is found that five Fourier
coefficients are sufficient to represent the normal components of the magnetic vector potential at both boundaries of
the inhomogeneity, with less than 1%  L2 norm error.
As a first example, R1=0.5, R2=1, R3=2, σ1=10 and σ2=1 are chosen. This corresponds to an inhomogeneity which is a
good conductor. Figure 2 shows the resulting current distribution in the object when the optimal currents obtained
after the optimization are applied. These optimum currents are obtained under norm(I)=1 constraint, and are I=[0.41
0.56 0.15 -0.41 -0.56 -0.15]. Resulting ||Vd|| value in this example is 0.37 mV. The optimum (best) coil excitation
results in a current density distribution which is localized on the conductor inhomogeneity as can be seen from Figure
2. Also the best current pattern resembles a sinusoid which is in accord with the earlier result obtained by the authors
and others using constant power constraint in injected current EIT.
The same problem described above is solved using | Ij | ≤ 1 constraint to see the effect of the constraints on the
solution. Optimum coil currents in this case are obtained as I=[1 1 1 -1 -1 -1] which is simply equivalent of opposite
drive in injected current EIT. This result is also in agreement with the earlier results. The current distribution in the
object when optimum coil currents are applied are shown in Figure 3. Resulting ||Vd|| in this example is 0.86 mV.
As a second example, a problem having the same geometry as the first problem is chosen but this time the
inhomogeneity is made an insulator, i.e. σ1=0. Optimum currents under norm(I)=1 constraint are I=[0.41 0.56 0.15 -
0.41 -0.56 -0.15], which is the same as the conductor case. Figure 4 shows the current distribution in the object. As
expected, again the same cosine pattern is obtained for the insulator case. Optimum currents for the second constraint
is the opposite drive as the first example, and the results and interpretation is very similar.
||Vd|| values given above for the examples cannot be compared directly because optimum currents for different
constraints have neither the same peak value nor the same norm. In order to compare different drive patterns fairly, an
approach of  Cheney and Isaacson (1992) is followed and three currents are calculated as, I1=[ -1.00 1.00 1.00  1.00  -
1.00  -1.00], I2 =[ 0.73 1.00  0.27  -0.73  -1.00  -0.27 ] , and I3  = [ 1.00 1.37  0.37  -1.00  -1.36  -0.37]. Here, I1 and I2
have the same peak value of 1 and norm of I3 is equal to that of I1. I2 and I3 are obtained from optimum current for
constant power case (cosine drive) by proper scaling. To compare these currents, minimum detectable object radius for
the three currents are calculated as a function of the inhomogeneity conductivity, assuming a measurement noise of
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                                            Figure 1    Figure  2

         Figure 3         Figure  4

   Figure 5            Figure  6
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0.5mV. The background conductivity is taken as σ2=1. Figure 5 shows the comparison of minimum detectable object
radii for  I1 and I2. It is found from this comparison that, when the peak current value is the same, opposite drive is
better than cosine drive in terms of distinguishability. On the other hand, when total power is kept constant, cosine
drive is slightly better than the opposite. For a measurement noise of 0.5mV and R2=1, R3=2, σ2=1, the values of
minimum detectable object radius (in cm) are also listed in Table 1 for easy numerical comparison of the three cases.

Table 1: Minimum detectable object radii (minimum R1), for I1, I2, and I3

σ 0 0.2 0.4 0.6 0.8 0.9 0.93 0.94 0.97 1.2 1.8 2 5 9

Rmin1 7.5 9.1 11.4 15.1 22.9 34.5 43.1 47.7 99.9 25.7 14.2 13.2 9.3 8.5

Rmin2 8.5 10.4 12.9 17.1 26.3 39.9 51.1 58.3 99.9 29.6 16.1 14.9 10.4 9.7

Rmin3 7.3 8.9 11.2 14.5 22.2 33.3 41.5 46.0 99.9 24.9 13.8 12.8 8.9 8.1

Figure 6 shows calculated ||Vd|| values as a function of inhomogeneity radius for a fixed inhomogeneity conductivity
of 10. In this figure, ||Vd|max occurs between R=0.6 and R=0.7 and decreases to zero for all three currents at R=1. The
reason of this behaviour is the quasi-static operation of induced current EIT system. The effect of magnetic field at the
two boundaries cancel each other as the two boundaries get close.

IV. CONCLUSION
In this work, distinguishability of a discrete coil induced current EIT system for a concentric inhomogeneity is
analyzed. The purpose of the proposed discrete coil configuration was to control the current distribution inside the
object without moving coils, or the object under investigation. It was shown through examples that this has been
successfully achieved. The currents that maximize the distinguishability are obtained for two different constraints:
Limited peak coil current and constant total supplied power. It has been found that, for concentric inhomogeneity,
cosine drive is best for constant total power constraint and opposite drive is better for limited peak coil current case.
Further research will focus on obtaining the optimum currents for eccentric inhomogeneities and on determining
minimum detectable object radius for that case. Optimizing the size of the coils and the number of coils to be used is
also subject to further investigation. An adaptive algorithm may be developed to obtain the best current pattern which
maximizes the distinguishability for an unknown conductivity distribution, utilizing successive excitations and
potential measurements.
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