EE 584
 MACHINE VISION

Motion Field and Optical Flow
Motion Field vs Optical Flow
Solving for Optical Flow
Gradient-based methods
Kanade Lucas Tracker
Parametric methods Frequency-based methods

Motion Field vs Optical Flow

- The apparent motion of brightness patterns observed when a camera is moving relative to the objects being imaged is called the optical flow
- Optical flow can be totally different from motion field, which depends on the projection of moving objects on the image plane
- e.g. barber's pole

- When
- an object moves in front of a camera or
- a camera moves through a stationary scene,
some intensity changes occur in the image
- It is possible to recover the relative motion or even the shapes of objects from these intensity changes

Motion Field

- Motion field assigns a velocity vector to each point in the image by

Let $\vec{v}_{o}=\frac{d \vec{r}_{o}}{d t} \quad \vec{v}_{i}=\frac{d \vec{r}_{i}}{d t}$
$\frac{1}{f} \vec{r}_{i}=\frac{1}{\vec{r}_{o} \cdot \vec{z}} \vec{r}_{o} \stackrel{\text { differentiating wrtt } t}{\Rightarrow} \frac{1}{f} \vec{v}_{i}=\frac{\left(\vec{r}_{o} \cdot \vec{z}\right) \vec{v}_{o}-\left(\vec{v}_{o} \cdot \vec{z}\right) \vec{r}_{o}}{\left(\vec{r}_{o} \cdot \vec{z}\right)^{2}}=\frac{\left(\vec{r}_{o} \times \vec{v}_{o}\right) \times \vec{z}}{\left(\vec{r}_{o} \cdot \vec{z}\right)^{2}}$

- A vector can be assigned to every image point; these vectors constitute the motion field
- Except the boundaries of the objects, for most of the object motions (rigid, non-rigid), we expect a smooth variation between neighboring points

Optical Flow (1/4)

- Optical flow is the apparent motion of brightness pattern
- Ideally, optical flow $\leftrightarrow \rightarrow$ motion field, but ...

Non-zero motion field, zero optical flow

- Optical flow is the only observation about object motion from an image
- Except for special situations, assume optical flow is approximately equal to the motion field

Optical Flow (2/4)

- Let $E(x, y, t)$ be the irradiance at time \dagger at the image point (x, y)
- $u(x, y)$ and $v(x, y)$ are horizontal \& vertical components of optical flow field
- We assume the image radiance to be the same at the next time instant for the corresponding point

$$
E(x+\underbrace{u(x, y) \delta t}_{\text {hor.displ. }}, y+\underbrace{v(x, y) \delta t}_{\text {ver.displ. }}, t+\delta t)=E(x, y, t)
$$

- A single constraint is not sufficient to determine both u and v
- Since motion field is continuous, Taylor expansion can be used

$$
\begin{gathered}
E(x+u \delta t, y+v \delta t, t+\delta t)=E(x, y, t)+\delta x \frac{\partial E}{\partial x}+\delta y \frac{\partial E}{\partial y}+\delta t \frac{\partial E}{\partial t}+e=E(x, y, t) \\
\Rightarrow \\
\Rightarrow \underbrace{\frac{\partial E}{\partial x}}_{E_{x}} \underbrace{d t}_{u}+\underbrace{\frac{\partial E}{\partial y}}_{E_{y}} \frac{d y}{d t}+\underbrace{\frac{\partial E}{\partial t}}_{v}=0 \quad \begin{array}{c}
\text { Optical flow }
\end{array} \quad \begin{array}{c}
\text { Optraint equation }
\end{array} \\
\Rightarrow E_{x} u+E_{y} v+E_{t}=0 \quad
\end{gathered}
$$

Optical Flow (3/4)

- For simplicity, consider 1-D case, $I(x, t)$,

$$
\begin{aligned}
& E_{t}(x, t) \approx-(E(x, 0)-E(x, 1)) \\
& \quad \Rightarrow E_{x}(x, t)=\frac{-E_{t}(x, t)}{u} \\
& \quad \Rightarrow E_{x}(x, t) u+E_{t}(x, t)=0
\end{aligned}
$$

- In 2-D, the relation between displacements and spatio-temporal derivatives becomes

$$
E_{x} u+E_{y} v+E_{t}=0 \quad: \text { optical flow constraint equation }
$$

Optical Flow (4/4)

$E_{x} u+E_{y} v+E_{t}=0 \quad$: optical flow constraint equation
Note that $(u v) .\left(E_{x} E_{y}\right)^{t}=-E_{t}$

- Optical flow vector (u, v) can be written as the sum of two vectors,
- one component along brightness gradient, $\left(E_{x}, E_{y}\right)$
- one perpendicular to the brightness gradient
- Component perpendicular to gradient is totally unknown or unobservable (aperture problem),
- Component in the direction of brightness gradient

$$
\left(\begin{array}{ll}
u & v
\end{array}\right) \cdot \vec{n}_{(E x, E y)}=\left(\begin{array}{ll}
u & v
\end{array}\right) \cdot \frac{\left(E_{x} E_{y}\right)^{t}}{\sqrt{E_{x}^{2}+E_{y}^{2}}}=\frac{-E_{t}}{\sqrt{E_{x}^{2}+E_{y}^{2}}}
$$

Estimating Motion from Brightness Variation

- Gradient-based methods
- Images and its spatio-temporal derivatives are used
- Optical flow solution : minimize optical flow constraint
- Pel-recursive algorithm :minimize DFD to have $D^{n+1}=D^{n+} U\left(D^{n}\right)$
- Correspondence-based (matching-type) methods
- Finding positions of "features" at consecutive two/more images
- Block/region-based algorithms:
- Edge/corner matching:
- Parametric methods
- Fitting a parametric model to motion vectors in a region

$$
\begin{array}{ll}
\text { - Affine: } & x^{\prime}=a_{0}+a_{1} x+a_{2} y \quad y^{\prime}=a_{3}+a_{4} x+a_{5} y \\
\text { - Perspective: } & x^{\prime}=\left(a_{0}+a_{1} x+a_{2} y\right) /\left(1+a_{7} x+a_{8} y\right) \\
& y^{\prime}=\left(a_{3}+a_{4} x+a_{5} y\right) /\left(1+a_{7} x+a_{8} y\right)
\end{array}
$$

- Frequency-based Methods

Smoothness of Optical Flow

- In order to solve optical flow equation, we should introduce an extra constraint, as
- Rigid body assumption (to be analyzed)
- Smoothness of neighboring motion vectors

$$
e_{s}=\iint\left(\left(u_{x}^{2}+u_{y}^{2}\right)+\left(v_{x}^{2}+v_{y}^{2}\right)\right) d x d y
$$

- Error in optical flow equation can also be written as

$$
e_{c}=\iint\left(E_{x} u+E_{y} v+E_{t}\right)^{2} d x d y
$$

- The problem can be formulated as minimization of e

$$
e=e_{s}+\lambda e_{c}
$$

- Minimization these equations can be achieved by using a discrete version of this integral equation

Estimating Optical Flow : Gradient-based

- Instead of solving the continuous formulation in discrete case, discretize the problem as
$e=\sum_{i} \sum_{j} s_{i j}+\lambda c_{i j} \quad$ where $\begin{array}{r}c_{i j}=\left(E_{x} u_{i j}+E_{y} v_{i j}+E_{t}\right)^{2} \\ s_{i j}=\frac{1}{4}\left(\left(u_{i+1 j}-u_{i j}\right)^{2}+\left(u_{i j+1}-u_{i j}\right)^{2}+\left(v_{i+1 j}-v_{i j}\right)^{2}+\left(v_{i j+1}-v_{i j}\right)^{2}\right)\end{array}$
- Differentiating constraint e wrt $u_{k l}$ and $v_{k l}$, we obtain :

$$
\begin{array}{ll}
\frac{\partial e}{\partial u_{k l}}=2\left(u_{k l}-\bar{u}_{k l}\right)+2 \lambda\left(E_{x} u_{k l}+E_{y} v_{k l}+E_{t}\right) E_{x} & \left(\bar{u}_{k l}: \text { local average of u }\right) \\
\frac{\partial e}{\partial v_{k l}}=2\left(v_{k l}-\bar{v}_{k l}\right)+2 \lambda\left(E_{x} u_{k l}+E_{y} v_{k l}+E_{t}\right) E_{y} & \left(\bar{v}_{k l}: \text { local averageof v }\right)
\end{array}
$$

- Equating these derivatives to zero,

$$
\begin{aligned}
& \left(1+\lambda E_{x}^{2}\right) u_{k l}+\lambda E_{x} E_{y} \quad v_{k l}=\bar{u}_{k l}-\lambda E_{x} E_{t} \\
& \lambda E_{x} E_{y} \quad u_{k l}+\left(1+\lambda E_{y}^{2}\right) v_{k l}=\bar{v}_{k l}-\lambda E_{y} E_{t}
\end{aligned}
$$

Estimating Optical Flow : Gradient-based

- Solving these equations for u and v [Horn and Schunck 81] :
$u_{k l}^{n+1}=\bar{u}_{k l}^{n}-\underbrace{\frac{\left(E_{x} \bar{u}_{k l}^{n}+E_{y} \bar{v}_{k l}^{n}+E_{t}\right)}{\left(1+\lambda\left(E_{x}^{2}+E_{y}^{2}\right)\right)}}_{\text {adjustment factor }} E_{x} \quad v_{k l}^{n+1}=\bar{v}_{k l}^{n}-\underbrace{\frac{\left(E_{x} \bar{u}_{k l}^{n}+E_{y} \bar{v}_{k l}^{n}+E_{t}\right)}{\left(1+\lambda\left(E_{x}^{2}+E_{y}^{2}\right)\right)}}_{\text {adjustment factor }} E_{y}$

- Note that the adjustment factor at each iteration is in the direction of $\left(E_{x}, E_{y}\right)$
- In order to implement this algorithm, the only missing elements are spatial and time derivatives of the brightness function

Estimating Optical Flow : Gradient-based

- Three first partial derivatives can be obtained as:

$\frac{\partial E(x, y, t)}{\partial x}=E_{x} \approx \frac{1}{4 \varepsilon}\left\{\left(E_{i+1, j+1, k}-E_{i, j+1, k}\right)+\left(E_{i+1, j, k}-E_{i, j, k}\right)+\left(E_{i+1, j+1, k+1}-E_{i, j+1, k+1}\right)+\left(E_{i+1, j, k+1}-E_{i, j, k+1}\right)\right\}$
$\frac{\partial E(x, y, t)}{\partial y}=E_{y} \approx \frac{1}{4 \varepsilon}\left\{\left(E_{i+1, j+1, k}-E_{i+1, j, k}\right)+\left(E_{i, j+1, k}-E_{i, j, k}\right)+\left(E_{i+1, j+1, k+1}-E_{i+1, j, k+1}\right)+\left(E_{i, j+1, k+1}-E_{i, j, k+1}\right)\right\}$
$\frac{\partial E(x, y, t)}{\partial t}=E_{t} \approx \frac{1}{4 \varepsilon}\left\{\left(E_{i, j+1, k+1}-E_{i, j+1, k}\right)+\left(E_{i, j, k+1}-E_{i, j, k}\right)+\left(E_{i+1, j+1, k+1}-E_{i+1, j+1, k}\right)+\left(E_{i+1, j, k+1}-E_{i+1, j, k}\right)\right\}$
- Another way of finding these partial derivatives is fitting a surface to the intensities locally and taking partial derivative analytically (results with better immunity against noise); e.g.
$E(x, y, t) \cong a_{0}+a_{1} x+a_{2} y+a_{3} t+a_{4} x^{2}+a_{5} y^{2}+a_{6} x y+a_{7} x t+a_{8} y t$

Discontinuities in Optical Flow

- Except for the boundaries, smoothness assumption is
- acceptable for translating rigid bodies
- merely acceptable for rotating rigid bodies
- acceptable for elastic (non-rigid) objects
- Solving optical flow equation based on smoothness assumption usually fails at moving object boundaries
- If these boundaries are known, optical flow estimate can be obtained with much better reliability; but the only way to obtain these boundaries based on motion information \rightarrow "chicken-egg problem" for moving object segmentation

Estimating Optical Flow: Kanade-Lucas Tracker

- An approach to overcome the aperture problem is to assume motion vector (u, v) remaining unchanged over the whole block, B [Lucas and Kanade 81]
- Minimize the optical flow equation within this block wrt u and v

$$
\min _{u, v} \sum_{(i, j) \in B}\left(E_{x}^{i j} u+E^{i j}{ }_{y} v+E_{t}^{i j}\right)^{2}
$$

- Differentiate wrt u and v; then, equate to zero

$$
\sum_{(i, j) \in B}\left(E_{x}^{i j} u+E^{i j}{ }_{y} v+E_{t}^{i j}\right) E_{x}^{i j}=0 \quad \sum_{(i, j) \in B}\left(E_{x}^{i j} u+E_{y}^{i j} v+E_{t}^{i j}\right) E_{y}^{i j}=0
$$

- Estimate for the optical flow for the block B is obtained as

$$
\left[\begin{array}{l}
\hat{u} \\
\hat{v}
\end{array}\right]=\left[\begin{array}{cc}
\sum_{(i, j) \in B} E_{x}^{i j} E_{x}^{i j} & \sum_{(i, j) \in B} E_{y}{ }_{y}^{i j} E_{x}{ }^{i j} \\
\sum_{(i, j) \in B} E_{x}^{i j} E_{y}^{i j} & \sum_{(i, j) \in B} E_{y}{ }_{y}^{i j} E_{y}^{i j}
\end{array}\right]^{-1}\left[\begin{array}{l}
-\sum_{(i, j) \in B} E_{t}^{i j} E_{x}{ }^{i j} \\
-\sum_{(i, j) \in B} E^{i j}{ }_{t} E_{y}{ }^{i j}
\end{array}\right]
$$

Estimating Optical Flow: Kanade-Lucas Tracker

- Iterative (incremental) refinement for the optical flow is possible
- Estimate optical flow vector at each pixel using one iteration of Kanade-Lucas
- Warp the image toward the other using the estimated optical flow vector

- Refine estimate by repeating these steps
- Since linearization of constant brightness constraint is valid for small displacements, apply estimation coarse-to-fine
- typical less than 1 pixel displacements for better approx.
- Construct image pyramids for two frames (multi-resolution)
- Estimate at the coarser resolution and propagate results to finer resolutions.

Estimating Optical Flow: Kanade-Lucas Tracker

- Iterative (incremental) refinement

Estimating Optical Flow: Kanade-Lucas Tracker
Coarse-to-Fine Estimation

Estimating Optical Flow: Block Matching

Block-based (match-based) algorithms

- Find intensity differences (or correlation) between blocks in consecutive frames
- Search methodology within the search area differs
- Sub-pixel localization is

Frame at $\mathrm{t}: \mathrm{I}_{\mathrm{t}}(\mathrm{x}, \mathrm{y})$ possible via interpolation

Estimating Optical Flow : Parametric

- Instead using a displacement model for each point (u, v),
fit a parametric model to all motion vectors in a region
- Affine : $x^{\prime}=a_{0}+a_{1} x+a_{2} y$
$y^{\prime}=a_{3}+a_{4} x+a_{5} y$

\square

- Perspective : $\quad x=\left(a_{0}+a_{1} x+a_{2} y\right) /\left(1+a_{7} x+a_{8} y\right)$
$y^{\prime}=\left(a_{3}+a_{4} x+a_{5} y\right) /\left(1+a_{7} x+a_{8} y\right)$

Affine

- The unknown parameters of each region can be solved
- Ideally, correct parameters should yield

$$
E_{x}\left(x^{\prime}-x\right)+E_{y}\left(y^{\prime}-y\right)+E_{t}=0
$$

- Least squares solution over all pixels within region

$$
\min _{\mathrm{a}} \sum\left(E_{x}\left(x^{\prime}-x\right)+E_{y}\left(y^{\prime}-y\right)+E_{t}\right)^{2}
$$

Frequency-based Approaches

- These methods rely on the assumption that the whole observed motion is translational
- Acceptable for moving cameras
- Spatio-temporal Frequency
- Spatio-temporal frequency content of a video from a translating camera contains non-zero energies only in a specific planar region

$$
\begin{aligned}
f(x, y, t) & =f(x-u t, y-v t, 0) \\
& =f(x, y, 0) * \delta(x-u t, y-v t) \\
& \Leftrightarrow F\left(w_{x}, w_{y}, w_{t}\right)=F\left(w_{x}, w_{y}\right) \delta\left(u w_{x}+v w_{y}+w_{t}\right)
\end{aligned}
$$

- This method find the plane, whose orientation is determined by the unknown motion parameters (u, v), after taking 3-D FFT of two frames

Frequency-based Approaches

- Phase-correlation Method

- Relation between 2-D Fourier Transforms of two consecutive frames, having a translational motion in between, has specific properties.

$$
\begin{aligned}
f_{2}(x, y)=f_{1}(x-u t, y-v t) & \Rightarrow F_{2}\left(w_{x}, w_{y}\right)=e^{-j \frac{2 \pi w_{x}}{N_{x}}} e^{-j \frac{2 \pi w w_{y}}{N_{y}}} F_{1}\left(w_{x}, w_{y}\right) \\
& \Rightarrow \frac{F_{1}\left(w_{x}, w_{y}\right) F_{2}^{*}\left(w_{x}, w_{y}\right)}{\left|F_{1}\left(w_{x}, w_{y}\right) F_{2}^{*}\left(w_{x}, w_{y}\right)\right|}=e^{j \frac{2 \pi w_{x}}{N_{x}}} e^{j \frac{2 \pi w w_{y}}{N_{y}}}=H\left(w_{x}, w_{y}\right) \\
& \Rightarrow h(x, y)=\delta(x-u, y-v)
\end{aligned}
$$

- Normalized product of 2-D Fourier Transforms of the two consecutive frames should yield a peak (impulse) in the spatial (image) domain.
- location of this peak is determined by the motion parameters of the camera.
- This algorithm can be applied in
- sub-pixel resolution by fitting a quadric to the peak and finding its maxima
- local blocks and the results of each block can be merged robustly

Frequency-based Approaches

- Phase-correlation Method

- Practical Problems:
- Non-circular shift effects \rightarrow Windowing
- Non-Bandlimited Signals \rightarrow High-pass filtering
- Peak Spreading \rightarrow Selection of local maxima
- Independently Moving Objects \rightarrow Select correct peak after reg.
- Subpixel Resolution \rightarrow Surface fit to $h(x, y) \&$ find its peak
- Local Partitioning \rightarrow Ability to fit local deformations

Layered Motion Estimation

- It is possible to estimate motion better, if pixels are grouped into objects (layers)
- At each layer an alpha map defines the boundaries, while parametric motion is assumed within layers

Intensity map

Intensity map

Frame 1

Alpha map

Alpha map

Frame 2

Velocity map

Velocity map

Frame 3

Layered Motion Estimation

- Algorithms alternate between estimating optical flow and segmenting them into coherent motion
- Estimate parametric motion at disjoint patches and cluster based on motion parameters [Wang\&Adelson 1994]

layers with pixel assignments and flow

