EE 701
 ROBOT VISION

Shape from Shading (SfS)
Problem definition
Linear Reflectance (special case)
General solution to SfS
Relaxation methods for SfS

Shape from Shading

- Although photometric stereo allows direct shape recovery from two images, one can perceive a lot even from a single image
- Without additional information, it is not possible to obtain (p, q) from a single image irradiance equation : $E(x, y)=R(p, q)$
- Extra information is either some "singular" points with known orientation or the "smoothness" of surfaces, which lack discontinuities in depth
- With smoothness constraint, neighboring patches can not assume arbitrary assumptions

SfS for Linear Reflectance Map (1/3)

Assume the reflectance map has the form $R(p, q)=f(a p+b q)$

- a, b are known constants,
- p, q unknown surface normals,
- f is a strictly monotonic function with an inverse
- Using image irradiance equation
 $E(x, y)=R(p, q) \rightarrow f^{-1}(E(x, y))=a p+b q$
- The slope of any surface at an arbitrary angle to the x-axis can be obtained using directional derivative:

$$
\begin{aligned}
m(\Theta) & =\nabla z(x, y) \cdot n_{\Theta}=\left[\frac{\partial z}{\partial x} \frac{\partial z}{\partial y}\right] \cdot\left[\begin{array}{c}
\cos \Theta \\
\sin \Theta
\end{array}\right] \\
& =p \cos \Theta+q \sin \Theta
\end{aligned}
$$

SfS for Linear Reflectance Map (2/3)

Choose a particular direction perpendicular to constant brightness
lines: $m\left(\Theta_{0}\right)=p \cos \Theta_{0}+q \sin \Theta_{0}=\frac{a p+b q}{\sqrt{a^{2}+b^{2}}}=\frac{f^{-1}(E(x, y))}{\sqrt{a^{2}+b^{2}}}$

- In this particular direction (which gives the maximum brightness change in the image), one can determine the slope of the surface
- Using the slope of the surface, one can determine $z(x, y)$ along a direction on $x y$-plane which is parallel to Θ_{0} direction on pq-plane
$\delta z=m\left(\Theta_{0}\right) \delta \xi \quad: \quad \delta \xi$ is a step along direction Θ_{0}
$\frac{\delta z}{\delta \xi}=\frac{f^{-1}(E(x, y))}{\sqrt{a^{2}+b^{2}}} \quad$ where
$x(\xi)=x_{0}+\xi \cos \left(\Theta_{0}\right)$ and $y(\xi)=y_{0}+\xi \sin \left(\Theta_{0}\right)$
$z(\xi)=z_{0}+\frac{1}{\sqrt{a^{2}+b^{2}}} \int_{0}^{\xi} f^{-1}(E(x, y)) d \xi$

SfS for Linear Reflectance Map (3/3)

$$
z(\xi)=z_{0}+\frac{1}{\sqrt{a^{2}+b^{2}}} \int_{0}^{\xi} f^{-1}(E(x, y)) d \xi
$$

- Unknown z_{0} should be determined at one point to find an absolute depth; otherwise depth will be relative
- In order to recover the shape of whole surface, we need several strips (still in the same direction) and several starting points
- However, in general $R(p, q)$ is not linear, hence strips are not lines

SfS algorithm for a linear reflectance map:

1. Start the solution at a known point (x_{0}, y_{0}, z_{0})
2. Take a small step along Θ_{0} direction
3. Calculate new (x, y, z)
4. Reset starting point as (x, y, z)
5. Repeat until there is a discontinuity in the image function

SfS for General Reflectance Map (1/3)

- Taking a small step along ($\delta x, \delta y$), the change in depth is equal to $\delta z=p \delta x+q \delta y$
- Provided that p and q are known at a given point, the changes in p and q are given by:

$\delta p=\frac{\partial^{2} z}{\partial x^{2}} \delta x+\frac{\partial^{2} z}{\partial x \partial y} \delta y, \delta q=\frac{\partial^{2} z}{\partial x \partial y} \delta x+\frac{\partial^{2} z}{\partial y^{2}} \delta y \Rightarrow\binom{\delta p}{\delta q}=H\binom{\delta x}{\delta y}$
- The Hessian matrix, H, is required to find the change in $p \& q$
- Image irradiance equation can be used to find the unknowns:
$\frac{\partial E(x, y)}{\partial x}=\frac{\partial R(p, q)}{\partial x}=\frac{\partial R}{\partial p} \frac{\partial p}{\partial x}+\frac{\partial R}{\partial q} \frac{\partial q}{\partial x}$
$\Rightarrow\binom{E_{x}}{E_{y}}=H\binom{R_{p}}{R_{q}}$
$\frac{\partial E(x, y)}{\partial y}=\frac{\partial R(p, q)}{\partial y}=\frac{\partial R}{\partial p} \frac{\partial p}{\partial y}+\frac{\partial R}{\partial q} \frac{\partial q}{\partial y}$

SfS for General Reflectance Map (2/3)

$$
\binom{\delta p}{\delta q}=H\binom{\delta x}{\delta y} \quad\binom{E_{x}}{E_{y}}=H\binom{R_{p}}{R_{q}}
$$

- It is not possible to find the elements of H , but one way to proceed is to eliminate H from these equations.
- Since we can not find a solution in an arbitrary direction on the surface, lets assume we can solve these equations for a specific direction, along the gradient of $R(p, q)$:

$$
\binom{\delta x}{\delta y}=\binom{R_{p}}{R_{q}} \delta \xi \Rightarrow\binom{\delta p}{\delta q}=\binom{E_{x}}{E_{y}} \delta \xi
$$

- If the direction of change in the image $x y$-plane is parallel to the gradient of $R(p, q)$, then change in (p, q) can be computed
- One can summarize all these relations with 5 ordinary DE:

$$
\frac{\partial x}{\partial \xi}=R_{p} \quad \frac{\partial y}{\partial \xi}=R_{q} \quad \frac{\partial z}{\partial \xi}=p R_{p}+q R_{q} \quad \frac{\partial p}{\partial \xi}=E_{x} \quad \frac{\partial q}{\partial \xi}=E_{y}
$$

SfS for General Reflectance Map (3/3)

- In order to obtain the whole surface, one must patch together all the (characteristic) strips that are seperately obtained by solving 5 ODE
- However, we require a point (for each set of ODE) with all initial values given in order to start a solution
- Such set of points are determined around a neighborhood of isolated (singular) maximum at $R\left(p_{0}, q_{0}\right)=E\left(x_{0}, y_{0}\right)$ or occluding boundaries

SfS algorithm for a general case (Characteristic Strip Expansion):

1. Start the solution at a known point ($x_{0}, y_{0}, z_{0}, p_{0}, q_{0}$)
2. Take a small step from (x_{0}, y_{0}) along direction parallel to gradient of $R\left(p_{0}, q_{0}\right)$
3. Compute changes in p and q from changes in $E(x, y)$
4. Calculate new values for R, R_{p} and R_{q}.
5. Compute new value for z
6. Reset starting point as (x, y, z, p, q)
7. Repeat until there is a discontinuity in the image function

SfS using Relaxation Methods (1/3)

- The method of characteristic strip expansion suffers from :
- sensitivity to measurement noise in practice
- problems between neighboring strips due to numerical integration
- hard to utilize info about surface orientation on occluding boundaries
- not possible to obtain parallel implementations
- An iterative scheme similar to finite-difference methods may be more desirable (easy to incorporate boundary conditions, parallel implementation)
- Since there is only one (image irradiance) equation against two unknowns (p, q), the common imposed constrained is smoothness of p and q
- A smooth surface is characterized by slowly varying gradients p and q
- Hence, one can specify the smoothness constraint as minimizing :

$$
e_{s}=\iint\left(\left(p_{x}^{2}+p_{y}^{2}\right)+\left(q_{x}^{2}+q_{y}^{2}\right)\right) d x d y
$$

SfS using Relaxation Methods (2/3)

- In order to account for noise which causes departure from ideal image irradiance equation, the problem is posed as a minimization of total error e given by

$$
e=e_{s}+\lambda e_{i} \quad \text { where } e_{i}=\iint(E(x, y)-R(p, q))^{2} d x d y
$$

- There are two approaches to minimize e
- Use calculus of variations (Euler equations) to convert analytic integral equation to 2nd order differential equations and solve these differential equations using numerical methods
- Directly minimize a discrete version of this integral equation

$$
e=\sum_{i} \sum_{j}\left(s_{i j}+\lambda t_{i j}\right) \quad \text { where } \begin{gathered}
t_{i j}=\left(E_{i j}-R_{s}\left(p_{i j}, q_{i j}\right)\right)^{2} \\
s_{i j}=\frac{1}{4}\left(\left(p_{i+1 j}-p_{i j}\right)^{2}+\left(p_{i j+1}-p_{i j}\right)^{2}+\left(q_{i+1 j}-q_{i j}\right)^{2}+\left(q_{i j+1}-q_{i j}\right)^{2}\right)
\end{gathered}
$$

SfS using Relaxation Methods (3/3)

- For directly minimizing the discrete version, differentiate wrt $p_{i j}$ and $q_{i j}$

$$
\begin{aligned}
& \frac{\partial e}{\partial p_{i j}}=2(p_{i j}-\underbrace{\bar{p}_{i j}}_{\text {localaver. }})-2 \lambda\left(E_{i j}-R_{s}\left(p_{i j}, q_{i j}\right)\right) \frac{\partial R_{s}}{\partial p} \\
& \frac{\partial e}{\partial q_{i j}}=2\left(q_{i j}-{\left.\underset{\text { localaver. }}{\bar{q}_{i j}}\right)-2 \lambda\left(E_{i j}-R_{s}\left(p_{i j}, q_{i j}\right)\right) \frac{\partial R_{s}}{\partial q}}^{\text {lolen }}\right.
\end{aligned}
$$

- After equating these two equations to zero, we obtain the iterative solution:
$p_{i j}^{n+1}=\bar{p}_{i j}^{n}+\lambda\left[E_{i j}-R\left(\bar{p}_{i j}^{n}, \bar{q}_{i j}^{n}\right)\right] \frac{\partial R}{\partial p} \quad q_{i j}^{n+1}=\bar{q}_{i j}^{n}+\lambda\left[E_{i j}-R\left(\bar{p}_{i j}^{n}, \bar{q}_{i j}^{n}\right)\right] \frac{\partial R}{\partial q}$

Photometric Stereo using Relaxation Methods

- Similar ideas can be applied to photometric stereo in order account measurement errors. If there are n images, we formulate problem as :

$$
e=\iint\left(\left(p_{x}^{2}+p_{y}^{2}\right)+\left(q_{x}^{2}+q_{y}^{2}\right)\right) d x d y+\sum_{k=1}^{n} \lambda_{k} \iint\left(E_{k}(x, y)-R_{k}(p, q)\right)^{2} d x d y
$$

where E_{i} is the brightness measured at ith image and R_{i} is the corresponding reflectance map

- Corresponding discrete equations suggest an iterative scheme :

$$
\begin{aligned}
& p_{i j}^{n+1}=\bar{p}_{i j}^{n}+\sum_{k=1}^{n} \lambda_{k}\left[E_{i j k}-R_{k}\left(\bar{p}_{i j}^{n}, \bar{q}_{i j}^{n}\right)\right] \frac{\partial R_{k}}{\partial p} \\
& q_{i j}^{n+1}=\bar{q}_{i j}^{n}+\sum_{k=1}^{n} \lambda_{k}\left[E_{i j k}-R_{k}\left(\bar{p}_{i j}^{n}, \bar{q}_{i j}^{n}\right)\right] \frac{\partial R_{k}}{\partial q}
\end{aligned}
$$

Recovering Depth from A Needle Diagram

- The algorithms produce surface shape information in the form of a needle diagram in which surface orientation is given for pels
- In most applications, a depth map, which is the height above a reference plane, is a desirable objective:

$$
z(x, y)=z\left(x_{0}, y_{0}\right)+\int_{\left(x_{0}, y_{0}\right)}^{(x, y)}(p d x+q d y)
$$

- Since p and q are obtained from noisy data, the above integral may yield erroneous; e.g. integral along a closed path may give nonzero results
- Use a least squares method to find the surface $z(x, y)$ that best fits to the imperfect estimate of surface gradient
$\iint\left(\left(z_{x}-p\right)^{2}+\left(z_{y}-q\right)^{2}\right) d x d y \quad z_{x, y}$: partial derivatives of $z(x, y)$

Final words on Shape from Shading ...

- Although SfS is an elegant idea, there are some practical difficulties which limits its usefulness
- Reflectance properties of surfaces are not always known accurately
- It is difficult to control the illumination of the scene
- Constant albedo assumption also limits performance

