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EE 584
MACHINE VISION

Edge Detection
Differential Operators
Discrete Approximations
Roberts, Prewit & Sobel
Laplacian of Gaussian (LoG) Detector
Canny Edge Detector
Corner Detection
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d Findin

= A curve in image where rapid changes occur

= Edges usually contain important info
= Surface orientation changes
= Shadows due to non-uniform illumination
= Occlusions of objects
= Discontinuity in the surface reflectance
> discontinuity in image brightness is expected
> derivatives can be used o detect edges
= Edge detection is complementary to

segmentation, since edges divide image into
regions
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Types of Edges

Madel of an ideal digital edge Model of a ramp digital edge I )\

I | /\

Roof-top edge

Gray-level profile Gray-level profile

of a horizontal line of a horizontal line
through the image through the image
© Gonzalez & Woods, Digital Image Processing,2" ed., Prentice-Hall, 2002

Line edges
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Major Steps in Edge Detection

| L % &
Yo ==

True edge Noise Poor Too many
susceptibility  localization  responses

= Steps for most edge detection algorithms:
= Filtering : Noise is a critical factor; filtering noise is
possible while losing edge strength

= Enhancement : Using gradient information, significant
changes in intensity is located

= Detection : Finding edge pixels among all the pixels with
non-zero gradient information

= Localization : (Optional) non max. suppression and
subpixel resolution
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Differential Operators (1/3)

1 forz>0
. 1 z
= A simple edge model : uz) = > forz=0  whereuz) = ja(t)dt
0 forz<O -

= Assume edge is aline :
Xsin@ - ycosd+ p=0 N
. s Bl ©
E(xy) =B, +(B, ~B)u(xsin@-ycosO + p)

= Partial derivatives of the intensity field E(x,y)

X

w =sin®(B, - B,) d(xsSin®@ — ycosd + p)

X

@ =-c0sO(B, — B)) 6(xsin® - ycosO + p)
y
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Differential Operators (2/3)

dE(xy)
= Magnitude for brightness gradient 6E?)><<, "
2 2 oy
> ("Egi' y)j +[6Eg’; V)J = (B, - B,)? 6% (xsin® - ycosd + p)

= Similarly, Lap/acian can be found as
% =sin’ ©(B, - B,)J (xsin® - ycosO + p)

2
6|§§/>2<,y) =cos O(B, —B,)J (xsin® - ycosd + p)

2 2
> ii)z( y),9 ii; Y) = (B,-B)J (xsin®- ycosd+ p)
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Differential Operators (3/3)

SEX VY (OEXNY _ 1o s saree
( ox ) +[ oy J =(B,-B))“0°(xsin@-ycos©+ p)
OZE X, azE X, -
af(z ) * 05/2 ) =(B,-B)J (xsinOo—-ycoH+ p)

= Note that the magnitude of brightness gradient
and Laplacian do not depend on orientation
(rotation or translation) of the edge
=> Isotropic operators

= Laplacian retains the sign of the brightness

difference across the edge, which allows to
determine the brighter side of the image
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Discrete Approximations (1/4)

= Using finite-difference approximation of a derivative :

OE(xy) _ 1 _ _
T“’ 25{(E+Lj+l E{,j+1)+(Ei+1,j E\J)}
GE(xy) _ 1 _ _

ay 28{(Ei+1,j+1 Ei+Lj)+(Ei,j+l E\J)}

= Discrete approximation to the magnitude of the
brightness gradient can be obtained as :

oE , OE 2 2 ?

= Discrete approximation to the angle of the

brightness gradient is not accurate since edge pixels
may have intermediate values
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Discrete Approximations (2/4)
0 0]

= Roberts operator

0E(x.Y)

(ax

= Prewitt operator

2 +(%’;y))2 ~{Ern-E )2 +(E a-E. )7

= Averaging to suppress noise

= Sobel operator

= Averaging with emphasis fo

center pixels

1

-1

0

-1

0

-1]10 1 1 1 1
-1 1 0 0 0
-1 1 -1(-1 -1
-1]0 1 1 2 1
-2 2 0 0 0
-1 1 -1(-2 -1
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Discrete Approximations (3/4)

= Compass Gradients for different orientations

= Sobel Compass

= Nevatia-Babu Compass

-100-10q 0 |100]100| |-10q -32 100| 100] 100| | 100|-10q 100{100| 100
-100-10q 0 |100100| |-10q -78| 92 |100,100| | -32| 78 | 100{100| 100
11011 01112 11211 21110 -100-10¢ 0 [100}100| |-100-104-0 |100] 100| |-10q -92| 0 | 92 |100]
2Fot2] [-1l0l1 ololo 1l0l-1 -100-10q 0 |100]100| |-109-10q -92| 78 | 100| |-109-10q-10q -78| 32
-100-10q 0 |100]100| |-104-100-10q -32| 100| |-10q-100-104-104-10q
-1/011] [-2]-1]0J [-1]-2]-1] |0]-1]-2 3 0 0
0 30 60
1/01-1 [0]-1-2| [-1]-2|-1] |-2/-1]0 100] 100[ 100] 100] 100] [ 100] 100 100] 100[ 100] [ 100] 100] 100[ 32 [-104
20012 |1/l0/-1] |0l0O|/0O| |-1/0/1 100| 100] 100] 100] 100] | 100| 100{100| 78 | -32| | 100| 100| 92 | -78|-10q
0|0|0[o0]o0][100 92| 0-92|-100 100|100 0:}-104-10q
1/0/-1) [2[1]0] [1]2]1] |[O0]1]|2
-100-100-104-109-10q | 32 | -78|-104-104-10 |-10q 78 | -92|-104-10
-100-100-104-109-104 |-104-100-104-104-10q |-10 -32|-104-104-10
0 0 0
a0 12C 15C
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Discrete Approximations (4/4)

= Finite-difference approximation of

a Laplacianin 3x3 picture cells : [ T |
i-1j+] —,j+1 | Ti+1Lj+
O’E(xy) _ 1 _
aXZ - £2 {EH'l,j 2E\,J +Ei‘1,j} Ei—ZLj E|J Ei+:Lj
O’E(xy) _ 1
a—yzzg{Ei,j—l_ZEi,j +Ei,j+l} Ei—Lj—l Ei‘j_1 Ei+:Lj—l

0’E(xy) , 9°E(xY) 4{1
2t =2 (B Bt TR W) TR
0x ay &4 -
Average of neighbors

= Laplacian will return O values around 1

constant and linearly changing regions

= Corresponding stencil (kernel) >
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Detection of Edges (1/2)

= Detection of an edge 1y
differs for 1sf and
2nd derivatives

= Maxima of 15 F(xy)
derivative gives edge
location

= Zero-crossing of 2nd "V
derivative shows the
location of edge

o

’j i Threshold
i i x

X
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Detection of Edges (2/2)

1
[ I

Gray-level profile

First
derivative

Second
derivative

© Gonzalez & Woods, Digital Image Processing,2" ed., Prentice-Hall, 2002
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Effect of Noise on Edges

Imaie im'ensi*rr 1s* derivative 2" derivative
// f |7| No noise

/
B B N

WW%‘ Gaussian noise with 0=0.1

S

Frvrr'-w'

M/ YT i

© Gonzalez & Woods, Digital Image Processing,2" ed., Prentice-Hall, 2002

Gaussian noise with 0=1.0

Gaussian noise with 0=10.0
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Detection vs. Localization

= Noise generates spurious edges

= In order to suppress noise, filtering is one
option but the support of such filters are
quite large

= Filtering makes the edges thicker
= Hence, edge localization becomes weaker.

This dilemma can not be avoided

METU EE 584 Lecture Notes by A.iydin ALATAN © 2012 Slide from Marc Pollefeys, Lecture Notes on Computer Vision

Lol c.oy

row
image f
) e il
_ )0 i
convolution mask
fO)] 1)) 10) i+l

o (i) = f(i-1,-1) + cof(-1) + cof(-1j+1) +
(i,j-1) + cof(i)) o+ oo f(ij+l) +
fi+1,j-1) + f(i+1,) + f(i+1,j+1)
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Convolution

METU EE 584 Lecture Notes by A.Aydin ALATAN © 2012 Slide from Marc Pollefeys, Lecture Notes on Computer Vision

Convolution |
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Laplacian of Gaussian (LoG)

Smoothing filter is a Gaussian
Enhancement step is a Laplacian
Detection is based on zero-crossings

h(x ) =0%(g(x y)Of(xy)) whereg .y )isaGaussiariter
=([0%g(x )0t (xy) where

2 2 2\ X+
D"'g(x.y)=(x Y Je 2"2
g

Edge location can be obtained by linear int.
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Laplacian of Gaussian (LoG)

2

X2 +y® -
Dwmw=({ﬂ

Inverted LoG«~""
function
(Mexican hat)

Vi
ajo|-1lo0fo0
0 |=-1|=2(-1]0
=1|=2|16|=2]|-1
0 |=1[=2(=-1]0
‘ r
|
|
i
i

aVLIVE B

-
© Gonzalez & Woods, Digital Image Processing,2" ed., Prentice-Hall, 2002
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Canny Edge Detector

Smooth the image with a Gaussian
Compute the gradient magnitude and angle

Apply non-maxima suppression fo magnitude
= remove all pixels except the maximum along the gradient
direction
Use double thresholding (Aysteresis) the
detect/link edges
= obtain two edges maps with two thresholds
i High threshold > thick edges - start tracing
2 From staring points, low threshold > trace on thin edges
= link the thin edges using the other to obtain the final

METU EE 584 Lecture Notes by A.Aydin ALATAN © 2012 Slide from Marc Pollefeys, Lecture Notes on Computer Vision

Canny Edge Detector

= Non-maxima suppression ¢« o+ s
P
= which point is the maximum? . . .
= along the gradient direction, q (}radjent/q

should be larger than p & r (both ¢ oo e o

p & r are interpolated)

= where is the next maximum? ¢ e e

= next one should be around the line
perpendicular to the gradient

vector,ie. rors . . . .
r
[ ] [ ] [ ]
Gradienﬁ\
s
. [ ] [ ] [ ]
[ ] [ ] [ ] L ]

22.03.2012
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Surface Fitting for Edge Detection

= Discrete approximations of derivatives limits the
performance

= Let z=f(x,y)be a continuous image intensity function
to be found, after fitted to the discrete pixel values
at each neighborhood

= f(x,y)function can be approximated locally at every
pixel of the image, so that derivatives can be found

w Let Aloy)zkpkoxr kayr ks koxys koy?+ koxo+kaxy+ koxy?s Koy’

= First solve for k; using the discrete pixel values,
then analytically find the partial derivatives to
determine the location of the edges
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Comparison between Edge Detectors

= There are 2 main approaches in edge detection

= Extracting local maxima of the magnitude gradient in the
direction of gradient

= Finding zero crossings of the Laplacian

= The idea behind these two approaches is quite similar

= Note that following two approaches are equivalent

= Extracting local maxima of the magnitude gradient in the
direction of gradient

= Finding points, where the 2nd directional derivative in the
direction of the gradient is zero.

= Hence, how are
= Zero crossings of the Laplacian

= Zero crossings of the 2" directional derivative in the
direction of The gradient

related?

22.03.2012
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Comparison between Edge Detectors

= Parameterize the directional derivative by
in the direction of gradient

| ~
, S S
atd -1)_5—5 Xty i+t }|
on cr I \[5; + _5') JSA .S]
s, ‘ 1]

. ° . ™Y — S |x+1

ol ysi+s] Js +82 Js +52 i

=— =0
o o S Sk, or ( s, ‘
) s, Y
Gradient Js +3 "-\ \,5 +5; \[.S;+5‘,'.,

. . *S o -

5,52+25 5,5, +5, 5"
] L (] [] S.\:-‘*‘S_\:
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Comparison between Edge Detectors

0’Sxy) _ S5 +2555+S,S
on’ S +S;

= Finding edges via LoG  0°gxy)=s,(xy)+s,(xy)

e I O I I B

_ s, S, o 9’s o’s
leta= b=
\/sf+s§ \/sf+sz *sxy)= " n’

Gradient Magnitude Maxima LoG zero crossing

22.03.2012
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Simulations : Edge Detection

Original gray-scale Additive Gaussian Noise
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Roberts Operator

Poor robustness to noise, low detection

22.03.2012
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Sobel & Prewitt Operators

Better robustness to noise, better detection
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Compass Gradients (Nevatia-Babu)

Good robustness to noise, noise/localization trade-off

22.03.2012
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LoG Operator

Better robustness to noise, good detection, better localization
(May fail at very nonlinear intensity gradients)

METU EE 584 Lecture Notes by A.Aydin ALATAN © 2012

T ————
ﬁ‘zé_f_;___ﬁ- -—¢v-.\ \Sa*_ﬂ\\ W
at

Y T:g;g@‘%@%j
__‘&_3 =S¢ —'5‘-(%

AR R

"lu\ir %
d

0%

%
9

)
Bl o1

3

BB

Canny Detector

Better robustness to noise, very good detection, good localization
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Performance Comparison

= Canny (5)

= LoG (4)

= Compass Gradients (3)
= Sobel & Prewitt (2)

= Roberts' Cross (1)

= Detection vs. Localization problem
still exists
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Final Words on Edge Finding

= A simple model is used : unit step + noise

= Better models are emerging for more
realistic situations

= Fundamental problem of detection vs.
localization still exists

Although edge detection is assumed to be a
simple problem, it is not possible to obtain
perfect results in real applications

22.03.2012
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Corner Detection : Intro

= Extraction of salient features from an
image is necessary in many applications

= Requirements for such feature detectors
= Accurate localization
= Repeatability (detectable under different views)

= Invariance under geometric and photometric
transformations

= Corners are typical salient features
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A corner model

= An ideal corner with an edge
along the x-axis and an angle ©

(X, y)=u(mx-y)m(y)

1 if x>0
- ulx)=
m=tan® u(x) {o otherwise

= Convolving with a 2-D Gaussian
yields (more realistic data)

S y) :jjg(x—a)zg(y-b)uu(ma—b)m(b) dadb

X2

—_ 1 20
g(x) el

22.03.2012
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Gaussian Curvature (1/4)

= Curvatureof a point, p, on a curve is defined as%

rate of change of the tangent vector

= For a surface, there exist too many (infinitely
many) curves passing through a given point, p

= Consider the intersection
of this surface with the s —
planes which pass thru the ™™ s
normal vector at point p

= Intersection of these planes with
the surface results with curves
of various curvatures

= Principal curvatures : min & max
of such curvatures, K, & K.
(planes always per‘pencﬁcularﬁrﬂ

1
»

angent|
lane

METU EE 584 Lecture Notes by A.Aydin ALATAN © 2012 Slide from Marc Pollefeys, Lecture Notes on Computer Vision

Gaussian Curvature (2/4

* Parametric surfacex(u,V), X,=ax(u,v/au, J>
« Unit surface normaN =+ X, X X,) // m\ >
| Xu X Xv | \\ v/

/

« First fundamental form: i t) N
t=u’ x,+ V' X, : avector in the tangent planexat E=X, . X,
I(t,t)= t.t=Eu2+ 2Fu'v'+Gv’'2 { F=x,. X,
G=Xx, . X,

» Second fundamental form: Hi(t) ~ B
N( t,t) =t.dN()=eu?+ 2fu'v'+gv’? fe; :',\\'l '_’:(““; m
=—N.x,=N

* Normal and Gaussian curvatures:
l( t, t eq — f2
(tt) K g

K. = =
Yot t) EG - F2

22.03.2012
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Gaussian Curvature (3/4
Monge Patches | A

x(u,v)= (u,v,I(u,v))

In this case
v
1
oN= ———— (I, -, 1)
(1+|u2+|V2)1/2 (=l =L, 1)
cE=1+12% F=I,,; G=1+72
_qu _Iuv _Ivvu
e — f=———"-— P
(1+| u2+| V2)1/2 (1+| u2+| V2)1/2 (1+| u2+| V2)1/2
; - [ W
Gaussian curvature is equal to: K=_uw w
(1+,2+1,92
METU EE 584 Lecture Notes by A.Aydin ALATAN © 2012
Gaussian Curvature (4/4)
H — I XXI yy - I fy
Gaussiarcurvature K =K, [K =~ K=

_ elliptic pt.

K>0

Gaussian Curvature

parabolic __

® k=0

TR]
s
s
R e A N
. S
RGP ZA
hlypexbuhc ~ -,.:’.:».':.,'o
Pt
K<0

Gaussian curvature is O for plane&cylindir, +1 for spheres, (-) for saddle |‘SoinTs.

It determines whether a surface is locally convex or locally saddle = corner at 0.

1. Compute the Gaussian curvature.

2. Select locations of Gaussian curvature extrema.

3. Matcheach el liptic maximawith a hyper bol i ¢ minima by principal curvatures

4. For a particular match, consider the segment joini ng the elliptic maximum
with the hyperbolic minimum.

5. The point at which the Gaussian curvature is equal to zero = corner

(L+12+12f

22.03.2012
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K-Curvature

= Extract the edges in the image using
one of the edge detection methods

= Represent the edges as chain codes

= Calculate k-curvature on the curve
1. Let the point denoted by t.

2. Subtract the difference of the
directions of the vectors defined
by[ t,t+k]Jand[ t-k,t].

3.Define this difference to be k-
curvature at t

4. Average k-curvatures with possibly
different weights(emphasizing small
k’s) to obtain the curvature.

= The local maximum of a curvature is
taken as a corner, if its curvature is
above some threshold.
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Kitchen-Rosenfeld Cornerness

= A cornerness measure may be proposed, as the
change of gradient direction along an edge contour
multiplied by the local gradient magnitude.

I
= Calculating the derivative of tan‘l[ | VJ , along

X

I
0 tan‘l(yj
dtan"l(x): 1 Ix _leyx_lylxx

dx 1+ %2 ox 12417

| |
d tanl( yj ad tanl(yj ( )
K = I X I X . . I y I X | 2

ax ay \/|2+|2 Y

21
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Zuniga-Haralick Facet Model:

= Image patch (7x7 or 5x5), can be modeled by a bi-
cubic polynomial

f(xy) =k + KX+ Ky + KX+ kxy + Kgy? + K, x° + kx?y + ko xy? +k,oy°

= Cornerness is again calculated as the rate of
change of the direction of the gradient along the
edge contour via

I xxlf _2| X I xI +| I : — k4k22 - k5k2k3 + k6k32
— y y3 WYy — K=2 3
2

(17 +12): (k2 +K2)

= If this measure has a local maximum and is above a
threshold, an edge point, detected after the non-
maxima gradient magnitude suppression = corner

METU EE 584 Lecture Notes by A.Aydin ALATAN © 2012

Harris-Stephens Corner Detector:

= If the following function, at some point , assumes
high values for any direction, (Ax,Ay) , the point can
be considered to be significantly distinct.

(X, ) weay) = U(l (p.a)-1(p+ax.q+ Ay))zdRJ

R

4

H

22.03.2012
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Harris-Stephens Corner Detector:

fT(X, Y)(Amy) = U(I(p,q) - I(p +Ax,q+ Ay))zdRJ

R
= Using Taylor series expansion, as

I(x+Ax y+Ay) = 1(x y)+2x1, (x y)+ Ayl (x y)

= The distincthess measure can be written as

- (R

c
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Harris-Stephens Corner Detector:
M(X, ¥ )axay) = [Bx Ay]lelx e

17 exby) lely ZR:Iny Ay

= If C has 2 significant eigenvalues, A;, A,,measure
should yield high values signaling an interest point

Cc’

- Ins‘read of calculating the
fgenva ues, the product
the ei envalues is
compared via Det(C)-kTrac€(C)

= /11 D12 - k(/]l +/12)2

22.03.2012
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Harris-Stephens Corner Detector:

Concentrating the measure around center of patch,
the summations are done using a Gaussian window,

DwelZ Dwdl
C(X’y):{iw,?lxly RZWlei

= There is also Hessian-Laplace detector

H . ]\\ 1\1 2
essian=| | I, Det=1.1, -1,

Xy

Note its relation to Gaussian Curvature ...

) ki
i i 10,1,
Gaussian _Curvature =(K , K )= ————
(1+]" +1“‘}

Search for elliptic maximas at corners or blobs
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SUSAN & Fast Corner Detection

= Radically different interest point detectors

= Anarea is defined by the pixels having brightness
similar to that of the nucleus (center point)

= USAN: Univalue Segment Assimilating Nucleus

= Near a corner, USAN significantly decreases and

attains a local minimum at the corner point

= brightness difference thresholdis utilized for deciding
whether a pixel in the circular mask belongs to USAN

= geometrical thresholdis deciding whether a local minimum

is a corner point.

22.03.2012
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SUSAN & Fast Corner Detection

= In another method, an arbitrary line 4 containing the
nucleus and intersecting the boundary of the circular
window at two opposite points is assumed

L

= For various lines k&, corner response function (CRF) is
calculated by minimizing :

Re = mkinl,(lp _IN)2 +(IP' _IN)ZJ
= For discrete case, interpolation is used
R=min(t, (4.7, ()
rl(x)z(lp _IC)2+(IP’ _Ic)z

rz(x):(IQ_IC)2+(IQ' _Ic)2
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Blob Detectors : Scale Invariant
Feature Transform

= The scale-normalized LoG function o2V*G
= 02 is required for scale invariance.

= The amplitude of the scale space representation in
general decreases with scale, and the factor o2
compensates for this decrease.

= The maxima and minima of 02V2G  produce the
most stable image features compared to other
image functions such as Harris corner detectors.

= How to implement scale normalized LoG in an
efficient manner?

Courtesy Elif Vural

22.03.2012
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Scale Invariant Feature Transform

= Scale Invariant Feature Transform (SIFT), isa
method for extracting distinctive features from
images.

= The features are invariant to image scale and
rotation.

= Inorder to assure scale invariance, the image must
be searched for stable features across all possible
scales.

= This requires the usage of a continuous function of
scale known as scale space.

Courtesy Elif Vural
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Scale Space Representation

= Given a continuous signal f, the scale space
representation L of f is defined as the solution to
the diffusion equation:

‘ = f:RP - R

VL = EZO_,.,.,,_,L

i=1

| =
[

oL =

¢

~J

L:RP xR, —R

I

with initial condition L(-; 0) = f(:)
= Equivalently, this family can be defined by
convolution with Gaussian kernels of variable width t.
L(: ) =g(: () 9 RV xRy — R

glz; t) = (27t)N/2

—(z?+.. 4x%)/(2t)
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Scale Invariant Feature Transform

= Only possible scale space kernel is the Gaussian
function.
= Scale space L(x,y,0) of an image I(x,y) as
L(x,y,0) =G(x,y,0) = I(x,y)

= The method SIFT suggests that the scale-space
extrema of difference of Gaussian functions with
two nearby scales (o and ka) convolved with the
image turn out fo be stable features.

D(x,y,0) = (G(x,y ko) —G(x,y,0)) = I(x,y)
L(z,y, ko) — L(x,y,0).

Courtesy Elif Vural
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Scale Invariant Feature Transform

* The maxima and minima of the images obtained by
convolution with DoG's are detected by comparing a
pixel to its 26 neighbours at the current and
adjacent scales.

Courtesy Elif Vural
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Scale Invariant Feature Transform

= The reason for using the
DoG function is that it is
a close approximation to
the scale-normalized
Laplacian-of-Gaussian
function 02V3G,

il
S
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Difference of Gaussian

% _ o2 V20— (fG - G(r,y, ko) — G(x,y,0)
Jdo do ko —o

G(z,y,ko) — G(x,y,0) = (k- 1)o’V*G

Courtesy Elif Vural
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Scale Invariant Feature Transform

= SIFT is capable of detecting features resembling
a DoG at various scales.

Courtesy Elif Vural
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Final Words

= Different salient point detectors
exist
= Edge, corner, blob

= In different applications, these
detectors have performances

= Edges are more suitable to define segments of
objects

= Corners perform better to match two scenes
that are observed from similar distance and
angles

= Blobs are more salient in case of scale and view
changes
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