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EE 584
MACHINE VISION

Edge Detection
Differential Operators
Discrete Approximations

Roberts, Prewit & Sobel
Laplacian of Gaussian (LoG) Detector
Canny Edge Detector

Corner Detection
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Edge Finding
� A curve in image where rapid changes occur
� Edges usually contain important info 

� Surface orientation changes
� Shadows due to non-uniform illumination
� Occlusions of objects
� Discontinuity in the surface reflectance

� discontinuity in image brightness is expected
� derivatives can be used to detect edges
� Edge detection is complementary to 

segmentation, since edges divide image into 
regions
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Types of Edges

(a)

(b)

(c)

Step edges

Roof-top edge

Line edges
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Major Steps in Edge Detection

� Steps for most edge detection algorithms:
� Filtering : Noise is a critical factor; filtering noise is 

possible while losing edge strength
� Enhancement : Using gradient information, significant 

changes in intensity is located
� Detection : Finding edge pixels among all the pixels with 

non-zero gradient information
� Localization : (Optional) non max. suppression and 

subpixel resolution

(a ) ( b ) (c ) (d )True edge Noise 
susceptibility

Poor 
localization

Too many 
responses
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Differential Operators (1/3)

� A simple edge model : ∫
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� Assume edge is a line :
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� Partial derivatives of the intensity field E(x,y)
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Differential Operators (2/3)

� Magnitude for brightness gradient
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� Similarly, Laplacian can be found as
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Differential Operators (3/3)

� Note that the magnitude of brightness gradient 
and Laplacian do not depend on orientation
(rotation or translation) of the edge
� Isotropic operators

� Laplacian retains the sign of the brightness 
difference across the edge, which allows to 
determine the brighter side of the image
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Discrete Approximations (1/4)
� Using finite-difference approximation of a derivative :
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� Discrete approximation to the magnitude of the 
brightness gradient can be obtained as :

� Discrete approximation to the angle of the 
brightness gradient is not accurate since edge pixels 
may have intermediate values
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Discrete Approximations (2/4)
� Roberts operator

� Sobel operator
� Averaging with emphasis to 

center pixels

� Prewitt operator
� Averaging to suppress noise

1 0

0 -1

0 -1

1 0

1

1−

0

1

1−

0 0

2−

21−

1−

0

1

1

2− 2

0

0

1−

1−

0

1

1

1− 1

0

0 1

1−

0

1

1−

0 0

1−

1

{ }2
,11,

2
,1,1

22 )()()
),(

()
),(

( jijijiji EEEE
y

yxE

x

yxE
++++ −+−≈

∂
∂+

∂
∂

METU EE 584 Lecture Notes by A.Aydin ALATAN © 2012

Discrete Approximations (3/4)
� Compass Gradients for different orientations

� Sobel Compass � Nevatia-Babu Compass
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Discrete Approximations (4/4)

� Finite-difference approximation of 
a Laplacian in 3x3 picture cells :
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� Laplacian will return 0 values around 
constant and linearly changing regions

� Corresponding stencil (kernel) �
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Detection of Edges (1/2)

� Detection of an edge 
differs for 1st and 
2nd derivatives

� Maxima of 1st

derivative gives edge 
location

� Zero-crossing of 2nd

derivative shows the 
location of edge 

x

f(x,y)

x

f’’(x,y)

x

f’(x,y)

Threshold
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Detection of Edges (2/2)
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© Gonzalez & Woods, Digital Image Processing,2nd ed., Prentice-Hall, 2002 

Image intensity     1st derivative     2nd derivative

No noise

Gaussian noise with σ=0.1

Gaussian noise with σ=1.0

Gaussian noise with σ=10.0

Effect of Noise on Edges
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Detection vs. Localization
� Noise generates spurious edges

� In order to suppress noise, filtering is one 
option but the support of such filters are 
quite large

� Filtering makes the edges thicker

� Hence, edge localization becomes weaker.

This dilemma can not be avoided
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Convolution
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Slide from Marc Pollefeys, Lecture Notes on Computer Vision
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Convolution
Slide from Marc Pollefeys, Lecture Notes on Computer Vision
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Convolution
exp −

x2 + y2

2σ 2
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Slide from Marc Pollefeys, Lecture Notes on Computer Vision
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Laplacian of Gaussian (LoG)

� Smoothing filter is a Gaussian

� Enhancement step is a Laplacian

� Detection is based on zero-crossings

� Edge location can be obtained by linear int. 
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Laplacian of Gaussian (LoG)
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© Gonzalez & Woods, Digital Image Processing,2nd ed., Prentice-Hall, 2002 

Inverted LoG 
function 

(Mexican hat)
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Canny Edge Detector
� Smooth the image with a Gaussian
� Compute the gradient magnitude and angle
� Apply non-maxima suppression to magnitude

� remove all pixels except the maximum along the gradient 
direction

� Use double thresholding (hysteresis) the 
detect/link edges

� obtain two edges maps with two thresholds
1. High threshold � thick edges � start tracing
2. From staring points, low threshold � trace on thin edges

� link the thin edges using the other to obtain the final

METU EE 584 Lecture Notes by A.Aydin ALATAN © 2012

Canny Edge Detector 

� Non-maxima suppression
� which point is the maximum?

� along the gradient direction, q 
should be larger than p & r (both 
p & r are interpolated)

� where is the next maximum?
� next one should be around the line 

perpendicular to the gradient 
vector, i.e.  r or s

Slide from Marc Pollefeys, Lecture Notes on Computer Vision
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Surface Fitting for Edge Detection

� Discrete approximations of derivatives limits the 
performance

� Let z=f(x,y) be a continuous image intensity function 
to be found, after fitted to the discrete pixel values 
at each neighborhood 

� f(x,y) function can be approximated locally at every 
pixel of the image, so that derivatives can be found

� Let f(x,y)=k1+k2x+ k3y+ k4x2+ k5xy+ k6y2+ k7x3+k8x2y+ k9xy2+ k9y3

� First solve for ki using the discrete pixel values, 
then analytically find the partial derivatives to 
determine the location of the edges

METU EE 584 Lecture Notes by A.Aydin ALATAN © 2012

Comparison between Edge Detectors
� There are 2 main approaches in edge detection 

� Extracting local maxima of the magnitude gradient in the 
direction of gradient

� Finding zero crossings of the Laplacian

� The idea behind these two approaches is quite similar 

� Note that following two approaches are equivalent
� Extracting local maxima of the magnitude gradient in the 

direction of gradient
� Finding points, where the 2nd directional derivative in the 

direction of the gradient is zero.

� Hence, how are
� Zero crossings of the Laplacian
� Zero crossings of the 2nd directional derivative in the 

direction of the gradient 
related?
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� Parameterize the directional derivative by t 
in the direction of gradient

S (x,y)Sx

Sy

Comparison between Edge Detectors
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� Finding edges via  LoG
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Simulations : Edge Detection

Original gray-scale Additive Gaussian Noise

METU EE 584 Lecture Notes by A.Aydin ALATAN © 2012

Roberts Operator

Poor robustness to noise, low detection
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Sobel & Prewitt Operators

Better robustness to noise, better detection

METU EE 584 Lecture Notes by A.Aydin ALATAN © 2012

Compass Gradients (Nevatia-Babu)

Good robustness to noise, noise/localization trade-off



22.03.2012

16

METU EE 584 Lecture Notes by A.Aydin ALATAN © 2012

LoG Operator

Better robustness to noise, good detection, better localization
(May fail at very nonlinear intensity gradients)

METU EE 584 Lecture Notes by A.Aydin ALATAN © 2012

Canny Detector

Better robustness to noise, very good detection, good localization
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Performance Comparison

� Canny (5)
� LoG (4)
� Compass Gradients (3)
� Sobel & Prewitt (2)
� Roberts’ Cross (1)

� Detection vs. Localization problem 
still exists

METU EE 584 Lecture Notes by A.Aydin ALATAN © 2012

Final Words on Edge Finding

� A simple model is used : unit step + noise

� Better models are emerging for more 
realistic situations 

� Fundamental problem of detection vs. 
localization still exists

Although edge detection is assumed to be a 
simple problem, it is not possible to obtain 
perfect results in real applications
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Corner Detection : Intro

� Extraction of salient features from an 
image is necessary in many applications

� Requirements for such feature detectors
� Accurate localization

� Repeatability (detectable under different views)

� Invariance under geometric and photometric 
transformations

� Corners are typical salient features

METU EE 584 Lecture Notes by A.Aydin ALATAN © 2012

A corner model
� An ideal corner with an edge 

along the x-axis and an angle Θ

( )


 >

=
otherwise

xif
xu

0

01

( ) ( ) ( )yuymxuyxI ⋅−=Θ ,

Θ= tanm

� Convolving with a 2-D Gaussian 
yields (more realistic data) 

( ) ( ) ( ) ( ) dadbbubmaubygaxgyxS ⋅−⋅−⋅−= ∫ ∫
∞

∞−

∞

∞−

),(

( ) 2

2

2

2

1 σ

σ

x

exg
−

Π
=



22.03.2012

19

METU EE 584 Lecture Notes by A.Aydin ALATAN © 2012

Gaussian Curvature (1/4)

� Curvature of a point, p, on a curve is defined as  
rate of change of the tangent vector

� For a surface, there exist too many (infinitely 
many) curves passing through a given point, p

� Consider the intersection 
of this surface with the 
planes which pass thru the 
normal vector at point p
� Intersection of these planes with 

the surface results with curves 
of various curvatures

� Principal curvatures : min & max 
of such curvatures, Kmin & Kmax
(planes always perpendicular)

METU EE 584 Lecture Notes by A.Aydin ALATAN © 2012

Gaussian Curvature (2/4)
• Parametric surface:  x(u,v), xu=∂x(u,v)/∂u, 

• Unit surface normal: N =                (xu × xv)  
| xu x xv |

1

• First fundamental form: I( t, t ) 
t =u’ xu+ v’ xv : a vector in the tangent plane at x

I( t, t ) ≡ t . t = Eu’2 + 2Fu’v’+Gv’ 2

E=xu . xu

F=xu . xv

G=xv . xv

{
• Second fundamental form: II( t, t ) 

II( t, t ) ≡ t . dN (t)= eu’2 + 2fu’v’+gv’ 2 e= – N . xuu = Nu . xu

f = – N . xuv = Nv . xu

g= – N . xvv = Nv . xv
{

• Normal and Gaussian curvatures:

κκκκt ≡
I( t, t )

II( t, t )
K ≡

eg – f 2

EG – F 2

Slide from Marc Pollefeys, Lecture Notes on Computer Vision



22.03.2012

20

METU EE 584 Lecture Notes by A.Aydin ALATAN © 2012

Gaussian Curvature (3/4)
Slide from Marc Pollefeys, Lecture Notes on Computer Vision

(1+Iu
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IuuIvv–Iuv
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Gaussian curvature is equal to:         K =                           .

Monge Patches I

u

v

x ( u, v )=  (u, v, I( u, v ))

In this case

• N=                           ( –Iu , –Iv , 1)T

• E = 1+Iu
2;  F = IuIv,; G = 1+Iv

2

• e =                          ;   f =                          ;  g =
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Gaussian Curvature (4/4)

1. Compute the Gaussian curvature.
2. Select locations of Gaussian curvature extrema.
3. Match each elliptic maxima with a hyperbolic minima by principal curvatures
4. For a particular match, consider the segment joini ng the elliptic maximum 

with the hyperbolic minimum. 
5. The point at which the Gaussian curvature is equal  to zero � corner

maxmin  : curvatureGaussian KKK ⋅= ( )222

2

1 yx

xyyyxx

II

III
K

++

−
=

K > 0

K < 0

K = 0

Gaussian Curvature

Gaussian curvature is 0 for plane&cylindir, +1 for spheres, (-) for saddle points.

It determines whether a surface is locally convex or locally saddle � corner at 0.



22.03.2012

21

METU EE 584 Lecture Notes by A.Aydin ALATAN © 2012

K-Curvature
� Extract the edges in the image using 

one of the edge detection methods
� Represent the edges as chain codes

� Calculate k-curvature on the curve
1.Let the point denoted by t.
2.Subtract the difference of the 

directions of the vectors defined 
by [ t, t+k] and [ t-k, t]. 

3.Define this difference to be k-
curvature at t

4.Average k-curvatures with possibly 
different weights(emphasizing small 
k’s) to obtain the curvature.

� The local maximum of  a curvature is 
taken as a corner, if its curvature is 
above some threshold.

t

t-1
t+1

t-2 t+2

t-k
t+k

METU EE 584 Lecture Notes by A.Aydin ALATAN © 2012

Kitchen-Rosenfeld Cornerness
� A cornerness measure may be proposed, as the 

change of gradient direction along an edge contour 
multiplied by the local gradient magnitude. 

� Calculating the derivative of              , along 
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Zuniga-Haralick Facet Model:
� Image patch (7x7 or 5x5), can be modeled by a bi-

cubic polynomial 
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� Cornerness is again calculated as the rate of 
change of the direction of the gradient along the 
edge contour via
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� If this measure has a local maximum and is above a 
threshold,  an edge point, detected after the non-
maxima gradient magnitude suppression � corner
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Harris-Stephens Corner Detector:

� If the following function, at some point , assumes 
high values for any direction, (∆x,∆y) , the point can 
be considered to be significantly distinct. 
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Harris-Stephens Corner Detector:
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� Using Taylor series expansion, as

� The distinctness measure can be written as
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Harris-Stephens Corner Detector:

� If C’ has 2 significant eigenvalues, λ1, λ2,measure 
should yield high values signaling an interest point
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� Instead of calculating the 
eigenvalues, the product 
of the eigenvalues is 
compared via 
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Harris-Stephens Corner Detector:

� There is also Hessian-Laplace detector

� Note its relation to Gaussian Curvature

� Concentrating the measure around center of patch, 
the summations are done using a Gaussian window, 
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� Search for elliptic maximas at corners or blobs
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SUSAN & Fast Corner Detection

� Radically different interest point detectors
� An area is defined by the pixels having brightness 

similar to that of the nucleus (center point)
� USAN: Univalue Segment Assimilating Nucleus

� Near a corner, USAN significantly decreases and 

attains a local minimum at the corner point 
� brightness difference threshold is utilized for deciding 

whether a pixel in the circular mask belongs to USAN

� geometrical threshold is deciding whether a local minimum 

is a corner point.
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� In another method, an arbitrary line k containing the
nucleus and intersecting the boundary of the circular
window at two opposite points is assumed

� For various lines k, corner response function (CRF) is
calculated by minimizing :

� For discrete case, interpolation is used 
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SUSAN & Fast Corner Detection
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Blob Detectors : Scale Invariant 
Feature Transform

� The scale-normalized LoG function 
� σ2 is required for scale invariance. 
� The amplitude of the scale space representation in 

general decreases with scale, and the factor σ2

compensates for this decrease.

� The maxima and minima of               produce the 
most stable image features compared to other 
image functions such as Harris corner detectors.

� How to implement scale normalized LoG in an 
efficient manner?

Courtesy Elif Vural
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Scale Invariant Feature Transform

� Scale Invariant Feature Transform (SIFT), is a 
method for extracting distinctive features from 
images.

� The features are invariant to image scale and 
rotation.

� In order to assure scale invariance, the image must 
be searched for stable features across all possible 
scales.

� This requires the usage of a continuous function of 
scale known as scale space.

Courtesy Elif Vural
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Scale Space Representation
� Given a continuous signal f, the scale space 

representation L of f is defined as the solution to 
the diffusion equation:

with initial condition

� Equivalently, this family can be defined by 
convolution with Gaussian kernels of variable width t.

Courtesy Elif Vural
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� Only possible scale space kernel is the Gaussian
function. 
� Scale space L(x,y,σ) of an image I(x,y) as

� The method SIFT suggests that the scale-space 
extrema of difference of Gaussian functions with 
two nearby scales (σ and kσ) convolved with the 
image turn out to be stable features.

Courtesy Elif Vural

Scale Invariant Feature Transform
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� The maxima and minima of the images obtained by 
convolution with DoG’s are detected by comparing a 
pixel to its 26 neighbours at the current and 
adjacent scales.

Courtesy Elif Vural

Scale Invariant Feature Transform
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� The reason for using the 
DoG function is that it is 
a close approximation to 
the scale-normalized 
Laplacian-of-Gaussian 
function           .

Courtesy Elif Vural

Scale Invariant Feature Transform
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� SIFT is capable of detecting features resembling 
a DoG at various scales.
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Courtesy Elif Vural

Scale Invariant Feature Transform
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Final Words

� Different salient point detectors 
exist
� Edge, corner, blob

� In different applications, these 
detectors have performances
� Edges are more suitable to define segments of 

objects
� Corners perform better to match two scenes 

that are observed from similar distance and 
angles

� Blobs are more salient in case of scale and view 
changes


