

METULEE 584 Lecture Notes by AAydin ALATAN © 2012
Scale Space Representation
Given a continuous signal
$$f$$
, the scale space
representation L of f is defined as the solution to
the diffusion equation:
 $\partial_t L = \frac{1}{2} \nabla^2 L = \frac{1}{2} \sum_{i=1}^{D} \partial_{x_i x_i} L$
 $f: \mathbb{R}^D \to \mathbb{R}$
 $L: \mathbb{R}^D \times \mathbb{R}_+ \to \mathbb{R}$
with initial condition $L(\cdot; 0) = f(\cdot)$
• Equivalently, this family can be defined by
convolution with Gaussian kernels of variable width t .
 $L(\cdot; t) = g(\cdot; t) * f(\cdot)$
 $g: \mathbb{R}^D \times \mathbb{R}_+ \to \mathbb{R}$
 $g(x; t) = \frac{1}{(2\pi t)^{N/2}} e^{-(x_1^2 + ... + x_D^2)/(2t)}$

