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EE 584
MACHINE VISION

Image Segmentation
Histogram-based Segmentation

Automatic Thresholding,K-means Clustering

Spatial Coherence

Merging and Splitting, Region Growing

Graph Theoretic Segmentation
Mean-shift Segmentation
Watersheds
Active Contours
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Segmentation
• Segmentation : Dividing images into 

(semantically meaningful) regions that appear 
to be images of different surfaces

• Two major approaches :
– Histogram-based segmentation

– Segmentation based on spatial coherence
• Divide (split) or merge type

• Growing regions type

• Graph theoretic approaches

• Reliable segmentation is only possible with 
some a priori info, which is not mostly available
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Histogram-based Segmentation
• Segmentation : Gray level � Binary mask

by an unknown threshold

• Useful for foreground/background 
segmentation

• How to find an automatic threshold ?
– considering variations in illumination & surface

• Gray-level histogram gives the number of 
picture cells having a particular gray-level
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Histogram-based Segmentation

• Ideally, object & background have constant
different brightness values inside their regions 
� put a threshold between peak values in histogram

� In practice, due to 

� measurement noise 

� non-uniform illumination

� non-uniform reflection from the surfaces  

brightness is not constant; there is some spread

Ideal Practice
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Image Thresholding Approaches

Main directions :
1. Histogram shape-based

– Analyze peaks, valleys, curvatures of smoothed histogram 

2. Clustering-based
– Iteratively, finding a threshold, clustering based this threshold

3. Entropy-based
– Choosing a threshold which max the info content in histogram

4. Attribute-based
– Similarities between edge, etc of image & its thresholded vers.

5. Spatial thresholding (higher order stats)
– Threshold selection on higher order statistics of spatial neighb.

6. Local thresholding 
– Finding threshold values at each neighborhood using local stats
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Automatic Thresholding Methods (1/3)

1. P-tile method 
• Use the a priori knowledge about the size of the object :  

assume an object with size p
• Choose the threshold such that %p of the overall 

histogram is determined
• Obviously, limited use T

P% 100%
2. Mode method 

• Find the “peaks” and “valleys” of the histogram

• Set threshold to the pixel value of the “valley”

• Non-trivial to find peaks/valleys : 
• ignore local peaks; choose peaks at a distance; find the valley 

between those peaks
T

255
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Automatic Thresholding Methods (2/3)
3. Iterative threshold selection 

• Starting with an approximate threshold, refine threshold 
iteratively, taking into account some goodness measure
e.g.  T= (µ1+µ2)/2 where µι is the mean gray value of               

previous segmented region i

4. Adaptive Thresholding
• In case of uneven illumination, global threshold has no use

• One approach is to divide an image into mxm subimages
and determine a threshold for each subimage
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Automatic Thresholding Methods (3/3)
5. Double Thresholding

• Starting from a conservative initial threshold T1, 
determine the “core” parts of the object

• Continuing from this core part, grow this object by 
including neighboring pixels which are between T1 and T2

T1 T2

6. Otsu Thresholding
• Minimize weighted sum of within-cluster variances
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K-means Clustering
• It is usually desired to segment an image into more 

than two regions

• K-means (or ISODATA) algorithm :

1) Choose initial mean values for k (or c) region

2) Classify n pixels by assigning to “closest” mean

3) Recompute the means as the average of samples in 
their (new) classes

4) Continue till there is no change in mean values

µ1 µ2 µ3 µ4 µ5 µ6T1 T2 T3 T4 T5µ1 µ2 µ3 µ4 µ5 µ6T1 T2 T3 T4 T5
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K-means by using color (11 segments)

Original Image

Clusters on color

K-means Clustering
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Spatial Coherence

� Histogram-based methods totally neglect 
the dependency between neighboring pixels

� Human visual system and its perception also 
supports dependency between pixels within 
a neighborhood for grouping

� Gestalt psychology

� Gestalt psychology identifies several 
properties result in grouping/segmentation: 
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Grouping based on Gestalt psychology :
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Spatial Coherence : Merging & Splitting 

� The output of any segmentation method can be 
improved by simply merging similar neighboring
regions together

� Similarity can be measured by 

� A simple threshold

� A geometrical attribute, such as “common 
boundary length”

� More sophisticated methods based on statistics

� Similarly, rather than merging, splitting can be 
required due to geometrical attributes
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Region Merge:
� A general region merge algorithm

� Beginning from an initial segmentation, 

� For each region check, whether its neighboring regions are 
“similar”, if so, merge these regions

� How to measure “region similarity” ?
� Compare their mean intensities

check with a predetermined threshold

� Compare their statistical distributions
check whether such a merge represents “observed” values better

� Check “weakness” of the common boundary 
weak boundary: intensities on two sides differ less than a 

threshold

Merge two regions if  W/S > τ where W=length of weak boundary

1) S = min{S1,S2} : minimum of two boundaries

2) S : common boundary
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Region Split :

� If some property of a region is NOT constant � split
� variance of the intensities, 

� error between the intensities and a fitted surface

� If decide on spitting, how to split, so that new regions 
will have constant values with this property? 
� Try equal size splitting � modified quad-tree representation

� Split and Merge
� Starting from a presegmentation,

� Find a region that can be splitted � split into four regions

� If any two or more neighboring subregions are “similar” �
merge all these regions into a single region
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Region Growing :
� Starting from “seed regions” (small regions with 

some homogeneity which is based on surface 
fitting)

� Find “compatible” neighboring points  which fit to a 
model (surface) of the seed region 

� grow the region

� Refit the surface taking into account these new 
points

� Check the difference between the new and the old 
goodness fit for the surface; if no improvement

� stop growing
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Graph Theory In Image Segmentation

For the analysis of images using graph theory 
• An image is mapped onto a graph 

• Each pixel (sub region) in the image corresponds to a vertex 

• Typical connection between the nodes is 4 (or 8) connections. 

• Vertices and edges have weights

• Pixel grey level value is usually assigned to vertex weight

• Weights associated with each link are based on some property of the   

pixels that it connects, such as their intensity differences.

Pixel Vertex Link

Four-way Connected Graph

Slides modified from Neslihan Yalçın Bayramoğlu Thesis Presentaton
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Graph Theory In Image Segmentation

• Insertion of links between “similar” intensities creates 

subtrees for these objects

• Every sub tree represents a region of the image

Region 1

Region 2

Slides modified from Neslihan Yalçın Bayramoğlu Thesis Presentaton
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Graph Theory In Image Segmentation

• There could be two main approaches to exploit graph 

theoretical formulation in image segmentation

• Bottom-up :  

• Starting from the whole image, recursively merging neighboring 

pixels (regions) to reach desired image segmentation 

• Example : Recursive Shortest Spanning Tree (RSST)        

• Top-down :

• Starting from the whole image, recursively dividing the image into 

subregions until desired image segmentation is reached.

• Example : Normalized Cut & Graph Cut
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Recursive Shortest Spanning Tree (RSST)

• A bottom-up graph-theoretic segmentation approach 

• Start from similarity of neighboring intensities

• Check similarity of neighboring regions

Algorithm:

1. Image is mapped onto a graph

2. Four-way connected graph is used

3. Absolute differences of gray levels between 

vertices are assigned to link weights

25 95

Link weight=70

Slides modified from Neslihan Yalçın Bayramoğlu Thesis Presentaton
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Recursive Shortest Spanning Tree (RSST)
Algorithm (cont’d) :

4. Nodes with the smallest link value are 

merged

5. Weights of the links neighboring to the 

newly formed region are updated

20 28

100

34 12

98 40
4

14 16

12

7280

78

Before Merging
Smallest weighted link
Merge these two nodes

100

34 12

98 40

10 12

16
7676

74
24

one of them is
duplicated link
remove one

After Merging

Link weigths are 
changed

Slides modified from Neslihan Yalçın Bayramoğlu Thesis Presentaton

…
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Minimal Cut Method
• A top-down approach

• Nodes are represented by using a weighted 
graph.

– Affinity matrix, A (similar nodes have 
higher valued entries)

• Cut up this graph to get subgraphs with 
strong links

Slides modified from D.A. Forsyth, Computer Vision - A Modern Approach

Affinity matrix
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Minimal Cut: Measuring Affinity

Intensity

Texture

Distance

aff x, y( ) = exp − 1
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Slides modified from D.A. Forsyth, Computer Vision - A Modern Approach

METU EE 584 Lecture Notes by A.Aydin ALATAN © 2013

24

Effect of scale (σ) on the affinity

aff x,y( )= exp − 1
2σ i
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Slides modified from D.A. Forsyth, Computer Vision - A Modern Approach
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Minimal Cut : Solution via Eigenvectors

• Idea:  Find vector, w, giving the association between each node 
and a cluster

– Elements within a cluster should have strong affinity with 
each other

– Maximize the following relation: wTA w (A : affinity matrix)
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• This relation is maximized, if all 3 terms are non-zero (not very small) 

• There should be an extra constraint, as wT w=1

• Optimize by method of Lagrange multiplier :  max{wTAw + λ (wTw-1)}

• Solution is an eigenvalue problem 

� Choose the eigenvector of A with the largest eigenvalue

Slides modified from D.A. Forsyth, Computer Vision - A Modern Approach
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Minimal Cut : Solution via Eigenvectors

40 Points in 2-D space

Matrix
(40x40)

eigenvector

Slides modified from D.A. Forsyth, Computer Vision - A Modern Approach

Minimal Cut Algorithm:
1. Form A-matrix & apply SVD
2. Determine the eigenvector 

corresponding to the 
largest eigenvalue

3. Threshold the components 
of this eigenvector to 
find node indices of a 
cluster
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Finding the Minimal Cuts:

Data Similarities Block-Detection

* Slides from Dan Klein, Sep Kamvar, Chris Manning, Natural Language Group Stanford University
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Eigenvectors and Blocks
• Block matrices have block eigenvectors:

• Near-block matrices have near-block eigenvectors

1 1 0 0

1 1 0 0

0 0 1 1

0 0 1 1

eigensolver

.71

.71

0

0

0

0

.71

.71

λ1= 2 λ2= 2 λ3= 0 λ4= 0

1 1 .2 0

1 1 0 -.2

.2 0 1 1

0 -.2 1 1

eigensolver

.71

.69

.14

0

0

-.14

.69

.71

λ1= 2.02 λ2= 2.02 λ3= -0.02 λ4= -0.02

* Slides from Dan Klein, Sep Kamvar, Chris Manning, Natural Language Group Stanford University
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Eigenvectors and Blocks
• Can put items into blocks by eigenvectors:

• Clusters clear regardless of row ordering:

1 1 .2 0

1 1 0 -.2

.2 0 1 1

0 -.2 1 1

.71

.69

.14

0

0

-.14

.69

.71

e1

e2

e1 e2

1 .2 1 0

.2 1 0 1

1 0 1 -.2

0 1 -.2 1

.71

.14

.69

0

0

.69

-.14

.71

e1

e2

e1 e2

* Slides from Dan Klein, Sep Kamvar, Chris Manning, Natural Language Group Stanford University

• Note that only with row ordering we can max{eTAe}
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Drawbacks of Minimal Cut

• Weight of cut is directly proportional to the number 
of edges in the cut.

• It tends to produce small, isolated components

Ideal Cut

Cuts with 
lesser weight
than the 
ideal cut

* Slide from Khurram Hassan-Shafique CAP5415 Computer Vision 2003

∑
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Normalized cuts
• Previous criterion only

evaluates within cluster
similarity, but not across 
cluster difference

• Instead, one would like to 
maximize within cluster 
similarity compared to the 
across cluster difference

• Write graph V, one cluster 
as A and the other as B

• Minimize Normalized Cut

cut(A,B) : sum of edges 
between A&B

assoc(A,V) : sum of edges only 
in A

• Construct A, Bsuch that 
their within cluster 
similarity is high, 
– compared to their association 

with the rest of the graph
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Slides modified from D.A. Forsyth, Computer Vision - A Modern Approach
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Normalized cuts

cut(A,B) : sum of edges between A&B

assoc(A,V) : sum of edges only in A
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Normalized cuts
• Defined vector y, has elements as

– 1,  if item is in A,

– -b, if item is in B

• After derivations

is shown to be equivalent to 

• with the constraint 

(Read proof in the distributed notes)

• This is so called Rayleigh Quotient

miny

yT D −W( )y
yTDy

 
  

 
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yTD1= 0

Slides modified from D.A. Forsyth, Computer Vision - A Modern Approach
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Normalized cuts
• Its solutions is the generalized eigenvalue problem

which gives

• Optimal solution is the eigenvector due to second smallest 
eigenvalue 

• Now, look for a quantization threshold that maximizes the 
criterion --- i.e. all components of y above that threshold go to 
one, all below go to -b

maxy yT D − W( )y( ) subject to yTDy = 1( )

D − W( )y = λDy

Slides modified from D.A. Forsyth, Computer Vision - A Modern Approach

min
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Figure from “Image and 
video segmentation: the 
normalized cut framework”, 
by Shi and Malik, copyright 
IEEE, 1998

Slides modified from D.A. Forsyth, Computer Vision - A Modern Approach

Results: Berkeley 
Segmentation Engine
http://www.cs.berkeley.edu/~fowlkes/BSE/
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Mean-shift Clustering
Observed data points are sampled from an underlying PDF

Assumed underlying PDF Real Data Samples

• Mean-shift procedure is an elegant way to 
determine the modes of a PDF without explicitly 
calculating the density itself.

• Mean-shift vector is an estimate of the gradient 
of the PDF  
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Mean-shift Clustering
From sparse samples, a kernel density estimate of a pdf:

Gradient of the density, k( ), is denoted by -g( ),

m(x) vector is called (weighted) “mean shift” and mode of f, y is 
obtained iteratively using mean shift vector
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Mean-shift Clustering
Mean Shift (General Mode Finding) Algorithm:

1. Choose a search window size.
2. Choose the initial location of the search window.
3. Compute the mean location (centroid of the data) within 

the search window.
4. Center/move the search window to the mean locatio n 

computed in Step 3.
5. Repeat Steps 3 and 4 until convergence.

The mean shift algorithm seeks the 
“mode” (or point of highest density) 
of a data distribution
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Mean Shift Segmentation Algorithm
1. Convert the image into features(via color, gradie nts, texture 

measures etc).
2. Choose initial search window locations uniformly in the data.
3. Compute the mean shift window location for each i nitial 

position.
4. Merge windows that end up on the same “peak” or m ode.
5. The data these merged windows traversed are clust ered together.

*Image From: Dorin Comaniciu and Peter Meer, Distribution Free Decomposition of 
Multivariate Data, Pattern Analysis & Applications (1999)2:22–30

Mean Shift Segmentation
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Mean Shift Segmentation Results:

http://www.caip.rutgers.edu/~comanici/MSPAMI/msPamiResults.html
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Watershed Image Segmentation
• Watershed is an image segmentation method.

• 2D image to 3D topological map.
– 3rd dimension is intensity of grey scale images

• Watershed segments an image into several 
catchment basins
– regions of an image (interpreted as a height field 

or landscape) where rain would flow into the same 
lake.

• An efficient way to compute such regions 
– start flooding the landscape at all of the local minima 

– label ridges wherever differently evolving components meet.

Courtesy of Emin Zerman and Mehmet Mutlu
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Watershed Algorithm
Method:

• Convert 2D image into a 3D topological map
– Dark regions holes, bright regions peaks

• Bore holes at all local minimas

• Immerse the surface into water at constant speed

• Different label for all minimas.

• drop water on an unclassified pixel and tag the pixel as the
final destination of the water drop.

Courtesy of Emin Zerman and Mehmet Mutlu
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Watershed Algorithm

Courtesy of Emin Zerman and Mehmet Mutlu
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Watershed Algorithm
• Watershed segmentation on gradient of image usually

gives segments mostly separated from edges.
– Derivative operator is susceptible to noise � Filter image

• Watershed segmentation suffers from over
segmentation.
– All local minima represent a segmented region.

� Watershed applied on original image. � Watershed applied on gradient image.

Courtesy of Emin Zerman and Mehmet Mutlu
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Active Contours

• Active Contours (snakes)
– Energy minimizing closed curves placed on an 

image

– Able to obtain and move salient image contours
• Locating them by shape shifting

• Snakes are modeled as parametric curves:
– ���� � � � , 	 � 
 	� ∊ 0,1 	and	C�0� � C�1�

45
Courtesy of Yeti Ziya Gürbüz
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Active Contours

46
Adopted from Kristen Grauman

• Consider a discrete representation of the contour, 
consisting of a list of 2D point positions (“vertices”).

),,( iii yx=ν

1,,1,0 −= ni Kfor

• For an active contour, at each 
iteration, move each vertex to 
another nearby location (“state”) 
based on a “goodness” measure

),( 00 yx

),( 1919 yx
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• Salient image contours  cannot be well–localized in low 
level processing

• Using some initialization localization of the edges can 
be improved

• Notice that such initializations are available:

– Motion information, depth, prior knowledge...

• Aim: Induce a snake (active contour) on an image 
around the object and optimize its energy to locate 
the object of interest

47
Courtesy of Yeti Ziya Gürbüz

Active Contours

initial intermediate final
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How Do Snakes Work ?

• Snakes has energies associated with them.
– As a natural behaviour snakes deform and change 

shape to minimize energy.

• These energies are as follows:

– ������ � ∮ ����� ���� + ����������� ��
�

 

• How to define these energies?
– So that snake will locate the object boundaries 

while minimizing its energy?

48

Internal External

Courtesy of Yeti Ziya Gürbüz
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Energies for Active Contours

• Define the internal energies such that
– No external force � Snake will be in a homogeneous, smooth 

shape; shrink or grow

– With external force � Snake will keep its shape continuous and 
smooth

• Define the external energies such that
– Enforce snake to move to the boundaries of interest and take 

the shape of the boundaries

• By appropriate definitions of the energies:
– Snake will converge to object boundaries

49
Courtesy of Yeti Ziya Gürbüz
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• Define internal and external energies as:

– ������ � � �
�

!
�" � �� �

! + # � ������
!� (Kass[1])

– ������ � � � ��$%�� � � + �&'��� � �

• ��$% � ) *+��, 	� !	also	��$% � ) */01��, 	� ∗ +��, 	�
!	possible

• �&'� ⇒ 4�546789	:;7�568<75	=;6:4�

Energies for Active Contours

Elasticity Curvature Energy

Courtesy of Yeti Ziya Gürbüz
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Energies for Active Contours

• This energy should be minimized
– Any gradient descent type algorithm should work

• Taking the negative gradient of the energy 
� Movement of snake & its convergence to a contour

• Note that gradient of the energy is force!

• Problems
– Short capture range
– Jumping local minimas
– Cannot go into concave regions
– Curvature estimation

51
Courtesy of Yeti Ziya Gürbüz
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Minimization of Energy
• Several algorithms have been proposed to fit 

deformable contours. 
– Greedy search
– Dynamic programming 

• For each point, search window around it and move 
to where energy function is minimal

• Stop when predefined number of points have not 
changed in last iteration, or after max number of 
iterations

• Note:
– Convergence not guaranteed
– Need decent initialization

52

This image cannot currently be displayed.

Adopted from Kristen Grauman
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Active Contour Examples

• Growing of a Snake

53
Courtesy of Yeti Ziya Gürbüz
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Active Contour Examples

• Object Tracking

54
Courtesy of Yeti Ziya Gürbüz



28

METU EE 584 Lecture Notes by A.Aydin ALATAN © 2013

Segmentation Using
Probabilistic Graphical Models

• Another graph-based approach for image 
segmentation (and other vision problems) are based 
on probabilistic models

• Unknown segmentation labels of pixels are modeled as 
a random field and being conditioned on the observed 
intensities, these labels are estimated 

55
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A toy example
Suppose we have a system of 5 interacting variables, perhaps 
some are observed and some are not.  There’s some probabilistic 
relationship between the 5 variables, described by their joint 
probability,

P(x1, x2, x3, x4, x5).

If we want to find out what the likely state of variable x1 is, 
what can we do?

Two reasonable choices are:  
(a) find the value of x1 (and of all the other variables) 

that gives the maximum of P(x1, x2, x3, x4, x5); (the MAP solution).

(b) marginalize over all the other variables and then take 
the mean or the maximum of the other variables. (the MMSE 
solution) ),,,,(

5432 ,,,
54321∑

xxxx

xxxxxP

slide from T. Darrel
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If the system really is high dimensional, such solutions will 
quickly become intractable.  

If there is some modularity in  P(x1, x2, x3, x4, x5), then things 
become tractable again.

Suppose the variables form a Markov chain:  
“x1 causes x2 which causes x3, … etc”.   

We might draw out this relationship as follows:

1x 2x 3x 4x 5x

A toy example

slide from T. Darrel
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)|,,,()(),,,,( 15432154321 xxxxxPxPxxxxxP =

By the chain rule, for any probability distribution, we have:

Our marginalization summations distribute through those terms:

),|,,()|()( 21543121 xxxxxPxxPxP=

),,|,(),|()|()( 32154213121 xxxxxPxxxPxxPxP=

),,,|(),,|(),|()|()( 432153214213121 xxxxxPxxxxPxxxPxxPxP=

)|()|()|()|()( 453423121 xxPxxPxxPxxPxP=

∑ ∑ ∑ ∑ ∑∑ =
1 2 3 4 55432

)|()|()|()|()(),,,,( 453423121
,,,

54321
x x x x xxxxx

xxPxxPxxPxxPxPxxxxxP

Remember : P(a,b) = P(b|a) P(a)

If we exploit the assumed modularity of the probability 
distribution over the 5 variables (in this case, the assumed 
Markov chain structure), then that expression simplifies:

1x 2x 3x 4x 5x

slide from T. Darrel
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Directed graphical models
• A directed, acyclic graph.

• Nodes are random variables
– Can be scalars or vectors, continuous or discrete.

• The direction of the edge tells the parent-child-relation:

• Every node i is associated by a conditional pdf defined by all 
the parent nodes πi of node i.  
– The resulting conditional probability is denoted as

• The joint distribution depicted by the graph is the product 
of all those conditional probabilities:

parent child

Px i |xπ i

Px1 ...xn
= Px i |xπ i

i=1

n

∏
)|()|()|()|()(),,,,( 45342312154321 xxPxxPxxPxxPxPxxxxxP =

1x 2x 3x
4x 5x

slide from T. Darrel

METU EE 584 Lecture Notes by A.Aydin ALATAN © 2013

60

Undirected graphical models

1x 2x 3x 4x 5x

Another modular probabilistic structure, more common in 
vision problems, is an undirected graph:

The joint probability for this graph is given by:

),(),(),(),(),,,,( 5443322154321 xxxxxxxxxxxxxP ΦΦΦΦ=

where                is called a “compatibility function”.  

We can define compatibility functions and we result in the 
same joint probability as for the directed graph described in 
the previous slides

),( 21 xxΦ

slide from T. Darrel
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Undirected graphical models

61

• A set of nodes joined by undirected edges.

• The graph makes conditional independencies explicit:  

• If two nodes are not linked, and we condition on every 
other node in the graph, then those two nodes are 
conditionally independent.

Conditionally independent, because 
they are not connected by a line in 
the undirected graphical model

Remember definition of conditional independency : 
P(a,b|c) = P(a|c) P(b|c)

slide from T. Darrel
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Undirected graphical models : cliques

62

• Clique:  a fully connected set of nodes

• A maximal clique is a clique that can not include more nodes 
of the graph w/o losing the clique property.

Maximal clique Non-maximal clique

not a clique

clique

slide from T. Darrel
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Undirected graphical models : 
Probability Factorization

63

• Hammersley-Clifford theorem addresses the pdf
factorization implied by a graph:  

• The probability factorizes according to the cliques of 
the graph

• A distribution has the Markov structure implied by an 
undirected graph iff it can be represented in the factored 
form

Px = 1

Z
Ψxc

c∈ξ
∏

set of maximal cliques

Potential functions 
of states of 
variables in maximal 
cliqueNormalizing constant

slide from T. Darrel
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Hidden Markov Models

64

Let x=(x1,x2, …,xN) be (unknown) state variables  (i.e. segmentation labels)
Let z=(z1,z2, …,zN) be (measured) observations    (i.e. image pixel values)

P( X=x | Z=z) : posteriori distribution
P( X=x) : prior probability (Markov chain)

Directed graph

Undirected graph
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Hidden Markov Models

65

Three canonical problems for discrete HMMs.

1. Evaluating the observation probability

2. MAP estimation 

3. Parameter estimation : Given the observation, z, find the 
optimal parameters, ω.

model 
parameters
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MRFs: Markov Models on Graphs
• Hammersley-Clifford theorem

• Example: Ising Model with single parameter ω={γ}

whenever xi and xj different from each other, a penalty γ
decreases P(x) by eγ .

Typical probable states

The factorized probabilities are assumed to be Gibbs:
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Hidden MRFs
• A Markov Random field, as before, can act as a 

prior model for a set of hidden random 
variables, X, under a set of observations z.

METU EE 584 Lecture Notes by A.Aydin ALATAN © 2013

Image Segmentation using MRFs

• How to apply (hidden) MRFs to image segmentation?
– X : the (unknown) label of the pixel indicating the segment 

index

– z : the observed image

– ω : model parameters.

68

• Some typical energy functions:

hF.B : image histogram of Bg/Fg Isling model

H(.,.) :  constraints certain variables to Fg/Bg. Considers distance between pixels and image contrast
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How to determine MAP estimates for MRFs?

A number of methods exist for minimization of E

• Iterated Conditional Modes (ICM)
– Choose an arbitrary location with the label, xi

– Change value of xi so that E has maximum decrease

– Repeat until there is no change in E.

No guarantee for a global minimum; suboptimal.

• Simulated Annealing

• Belief Propagation

• Min-Cut / Max-Flow (binary-labeling optimal !)69
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MRF Energy Minimization via Min-Cut
Assume the following (MRF) energy, E(x1, x2), on a binary labeling (2

segments) problem with only two variables x1 and x2.

Aim is minimizing this energy (i.e. maximizing probability) wrt xi.

Convert the problem into a graph with 2 extra nodes (s,t)

Courtesy by Ozan Sener

e.g. x1 = 0 � v1 belongs s
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MRF Energy Minimization via Min-Cut
Minimization of MRF energy on binary labeling problem 

is equivalent to finding minimum cut.

Courtesy by Ozan Sener

O: Set of nodes selected as object
B: Set of nodes selected as 
background

METU EE 584 Lecture Notes by A.Aydin ALATAN © 2013

Finding Min-Cut
• Min-cut/max-flow equivalance theorem:

– Finding minimum cut is equivalent to finding 
maximum flow from source to sink.

• Abtraction: “Maximum amount of water that can be sent 
from source to sink by interpreting edges as directed 
pipes with capacities as weights”

• Max-flow can be obtained by augmenting paths algorithm.

Courtesy by Ozan Sener

Capacities Max-flow = 120 Min-cut = 120
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Augmenting Paths Algorithm

• Find shortest s-t path on the 
unsaturated edges of graph

• Push maximum available flow through 
this s-t path.

• Iterate until there exist no s-t path 
with at least one unsaturated edge

Courtesy by Ozan Sener
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• Find a path from S 
to T along non-
saturated edges

“source”

A graph with two terminals

S T
“sink”

� Increase flow along 
this path until some 
edge saturates

Slide by Yuri Boykov

Augmenting Paths Algorithm
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• Find a path from S 
to T along non-
saturated edges

“source”

A graph with two terminals

S T
“sink”

� Increase flow along 
this path until some 
edge saturates

� Find next path…
� Increase flow…

Slide by Yuri Boykov

Augmenting Paths Algorithm
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• Find a path from S 
to T along non-
saturated edges

“source”

A graph with two terminals

S T
“sink”

� Increase flow along 
this path until some 
edge saturates

Iterate until …      all paths 
from S to T have at least one 

saturated edge

MAX FLOW � MIN CUT

Break between the two sets always cutting connections that are at capacity

Slide by Yuri Boykov

Augmenting Paths Algorithm
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http://www.cse.yorku.ca/~aaw/Wang/MaxFlowStart.htm
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Segmentation Using
Probabilistic Graphical Models
Summary

• Observed image pixels and unknown segment labels 
are modeled via (hidden) MRF formulation

• A (Gibbs) energy is minimized to determine the 
unknown segmentation labels

• Minimization of the energy is achieved by using min-
cut/max-flow solution in an optimal way for binary 
problems

• Unknown model parameters of segments should be 
provided
– User interaction or other a priori information

78


