EE 584
 MACHINE VISION

Binary Images Analysis

Geometrical \& Topological Properties
Connectedness
Binary Algorithms
Morphology

Binary Images

- Binary (two-valued; black/white) images gives better efficiency in acquiring, storage, processing and transmission.
- simplified description in terms of shape
- Obtained by thresholding or segmentation of a graylevel image
- One can compute some geometrical (e.g. area, orientation) and topological (connectedness) properties using binary images
- Remember that all we have is a "silhouette", but good recognition by humans is encouraging

METU EE 584 Lecture Notes by A.Aydin ALATAN © 2012
 Binary Images:
 Geometrical Properties (1/4)

- Assume continuous binary image, $b(x, y)$
(background 0, foreground 1)
Area: $\quad A=\iint b(x, y) d x d y$
Position : $\bar{x}=\frac{\iint x b(x, y) d x d y}{\iint b(x, y) d x d y}$
$\bar{y}=\frac{\iint y b(x, y) d x d y}{\iint b(x, y) d x d y}$
Center of mass ($1^{\text {st }}$ moment along one of the axis)

Binary Images : Geometrical Properties (2/4)

For discrete images,

- We denote the set of pixels in a region by R
- Assuming square pixels, we obtain
- Area:

$$
A=\sum_{(x, y) \in R} 1
$$

- Centroid:

$$
\begin{aligned}
& \bar{x}=\frac{1}{A} \sum_{(x, y) \in R} x \\
& \bar{y}=\frac{1}{A} \sum_{(x, y) \in R} y
\end{aligned}
$$

METU EE 584 Lecture Notes by A.Aydin ALATAN © 2012
 Binary Images: Geometrical Properties (3/4)

Orientation: Find the line for which the integral of the square of the distance to the object points is a minimum

$$
E=\iint r^{2} b(x, y) d x d y \quad \begin{aligned}
& r \text { is a perpendicular distance } \\
& \text { from }(x, y) \text { to orientation line }
\end{aligned}
$$

The line passes thru center of mass with an angle given by:
[See the derivations on the distributed notes]
$\tan 2 \Theta=\frac{b}{a-c}$
$a=\iint\left(x^{\prime}\right)^{2} b\left(x^{\prime}, y^{\prime}\right) d x^{\prime} d y^{\prime}$
$b=2 \iint\left(x^{\prime} y^{\prime}\right) b\left(x^{\prime}, y^{\prime}\right) d x^{\prime} d y^{\prime}$
$c=\iint\left(y^{\prime}\right)^{2} b\left(x^{\prime}, y^{\prime}\right) d x^{\prime} d y^{\prime}$

METU EE 584 Lecture Notes by A.Aydin ALATAN © 2012
 Binary Images: Geometrical Properties (4/4)

- Another technique to calculate the axis of the second least moment

Axis for which the squared distance to 2D object points is minimized (maximized).

- Compute the eigenvectors of $2^{\text {nd }}$ moment matrix

$$
\left[\begin{array}{ll}
\mu_{20} & \mu_{11} \\
\mu_{11} & \mu_{02}
\end{array}\right]=V D V^{T}=\left[\begin{array}{ll}
v_{11} & v_{12} \\
v_{22} & v_{22}
\end{array}\right]\left[\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right]\left[\begin{array}{lll}
\bar{v}_{11} & \bar{v}_{12} \\
v_{21} 1 & v_{22}
\end{array}\right]^{T}
$$

Binary Images: Topological Properties

In case of more than one object is in the field of view:

- Area, center of mass or orientation produce an average value
- Different components should be separated by defining the meaning of connectedness between two binary cells
- Two points on an image are connected, if a path can be found along which $b(x, y)$ is constant
- A connected component is the maximal set of connected points

Topological Properties:
 Discrete Connectedness

- Neighbors : pixels having boundaries
- 4-neighbors : only edge-adjacent pixels
- 8- neighbors : edge- \& corner-adjacent pixel

B	C	B	
C	H	C	
B	C	B	
4-connected			

C	C	C	
C	H	C	
C	C	C	
8-connected			

- Path : a sequence of neighboring pixels

METU EE 584 Lecture Notes by A.Aydin ALATAN © 2012
Topological Properties : Connected Components

- Dividing a binary image into connected components: Connected component labeling (CCL)

- Two approaches for CCL
- Recursive
- Sequential (2-pass)

Sequential Connected Components (1/2)

- Labeling a pixel only requires to consider its prior and superior neighbors.
- It depends on the type of connectivity used for foreground (4-connectivity here).

What happens in these cases?

Equivalence table

Sequential Connected Components (2/2)

- Process the image from left to
right, top to bottom:
1.) If the next pixel to process is 1
i.) If only one of its neighbors (top or left) is 1 , copy its label.

ii.) If both are 1 and have the same label, copy it.
iii.) If they have different labels
- Copy the label from the left.
- Update the equivalence table.iv.) Otherwise, assign a new label.

- Re-label with the smallest of equivalent labels

Binary Properties:

- Some properties obtained using connected components analysis
- Area : Usually used in "size filters"
- Perimeter: Boundary following algorithms
- Compactness : (Perimeter) ${ }^{2}$ /Area
- circle : the most compact
- line : the least compact
- Circularity:

Circularity

- Measure the deviation from a perfect circle
- Circularity.

$$
C=\frac{\mu_{R}}{\sigma_{R}}
$$

where μ_{R} and σ_{R}^{2} are the mean and variance of the distance from the centroid of the shape to the boundary pixels $\left(x_{k} y_{k}\right)$.

- Mean radial distance:

$$
\mu_{R}=\frac{1}{K} \sum_{k=0}^{K-1}\left\|\left(x_{k}, y_{k}\right)-(\bar{x}, \bar{y})\right\|
$$

- Variance of radial distance:

$$
\sigma_{R}^{2}=\frac{1}{K} \sum_{k=0}^{K-1}\left[\left\|\left(x_{k}, y_{k}\right)-(\bar{x}, \bar{y})\right\|-\mu_{R}\right]^{2}
$$

Invariant Descriptors

- S is a subset of pixels (region).
- Central $(j, k)^{\text {th }}$ moment defined as:

$$
\mu_{j k}=\sum_{(x, y) \in S}(x-\bar{x})^{j}(y-\bar{y})^{k}
$$

- $\mu_{j k}$ is invariant to translation of S.
- Interpretation:
- $\mu_{00}: 0^{\text {th }}$ central moment: area
- $\mu_{02,20}: 2^{\text {nd }}$ central moment: variance
> $\mu_{03,30}: 3^{\text {rd }}$ central moment: skewness
- $\mu_{04,40}: 4^{\text {th }}$ central moment: kurtosis

Moment Invariants

- Normalized central moments

$$
\eta_{p q}=\frac{\mu_{p q}}{\mu_{00}^{\gamma}}, \quad \gamma=\frac{p+q}{2}+1
$$

- A set of invariant moments can be defined for object description:

$$
\begin{aligned}
& \phi_{1}=\eta_{20}+\eta_{02} \\
& \phi_{2}=\left(\eta_{20}-\eta_{02}\right)^{2}+4 \eta_{11}^{2} \\
& \phi_{3}=\left(\eta_{30}-3 \eta_{12}\right)^{2}+\left(3 \eta_{21}-\eta_{03}\right)^{2} \\
& \phi_{4}=\left(\eta_{30}+\eta_{12}\right)^{2}+\left(\eta_{21}+\eta_{03}\right)^{2}
\end{aligned}
$$

(Additional invariant moments $\phi_{5}, \phi_{6,} \phi_{7}$ can be found in the literature).

- Invariant to rotation, scaling \& translation (RST)

Binary Algorithms: Distance Transform

- A measure is necessary to find the distance between two pixels on a binary image, $b(i, j)$
- City-block, chessboard
- Euclidean

$$
d_{1}(k, l)=|k|+|l|
$$

$$
d_{2}(k, l)=\sqrt{k^{2}+l^{2}} .
$$

- Distance Transform, $D(i, j)$: Minimum distance between an object and all background points D

City-block distance transform computation: Minimum of N\&W (S\&E) neighbor +1 and merge 2 passes

- Points that give the locally maximum (ridges) of such distances are called medial axis (skeleton)

METU EE 584 Lecture Notes by A.Aydin ALATAN © 2012

Binary Algorithms: Morphological Operations

- Mathematical morphology is a set-theoretical approach to image analysis, based on shape.
- Signals are locally compared with structuring elements S of arbitrary shape with a reference point R

- Aim : Transforming signals into simpler ones by removing irrelevant information
- Usually used for binary images, but gray-level extensions also exist

Morphological Operators

- Basic idea
- Scan the image with a structuring element
- Perform set operations (intersection, union) of image content with structuring element
- Two basic operations
, Dilation
- Erosion
- Several important combinations
- Opening
- Closing
- Boundary extraction

Dilation

- Definition
. "The dilation of A by B is the set of all displacements z, such that $(\hat{B})_{z}$ and A overlap by at least one
 element".
- $\left((\hat{B})_{z}\right.$ is the mirrored version of B, shifted by z)

- Effects

, If current pixel z is foreground, set all pixels under $(B)_{z}$ to foreground.
\Rightarrow Expand connected components
\Rightarrow Grow features
\Rightarrow Fill holes

Erosion

- Definition

, "The erosion of A by B is the set of all displacements z, such that $(B)_{z}$ is entirely contained in A ".

- Effects

, If not every pixel under $(B)_{z}$ is foreground, set the current pixel z to background.
\Rightarrow Erode connected components

$A \ominus B$
\Rightarrow Shrink features
\Rightarrow Remove bridges, branches, noise

METU EE 584 Lecture Notes by A.Aydin ALATAN © 2012 Effects of Dilation and Erosion

Original Image

Opening

- Definition

, Sequence of Erosion and Dilation
$A \circ B=(A \ominus B) \oplus B$

- Effect

, $A \circ B$ is defined by the points that
 are reached if B is rolled around inside A.
\Rightarrow Remove small objects, keep original shape.

METU EE 584 Lecture Notes by A.Aydin ALATAN © 2012

Effect of Opening

- Feature selection through size of structuring element

Original image

Thresholded

Opening with larger SE

Effect of Opening

- Feature selection through shape of structuring element (SE)

Opening after circular SE

Closing

- Definition
, Sequence of Dilation and Erosion

$$
A \cdot B=(A \oplus B) \ominus B
$$

- Effect

, $A \cdot B$ is defined by the points that are reached if B is rolled around on the outside of A.
\Rightarrow Fill holes,
keep original shape.

Effect of Closing

- Fill holes in thresholded image
(e.g. due to specularities)

Size of structuring elements
determines which structures are selectively filled

METU EE 584 Lecture Notes by A.Aydin ALATAN © 2012
Binary Algorithms: Morphological Operations

OPERING
closing

METU EE 584 Lecture Notes by A.Aydin ALATAN © 2012

Morphological Boundary Extraction

- Definition
, First erode A by B, then subtract the result from the original A.
$\beta(A)=A-(A \ominus B)$

- Effects
, If a 3×3 structuring element is used, this results in a boundary that is exactly 1 pixel thick.

Morphology Operators on Grayscale Images

- Dilation and erosion typically performed on binary images.
- If image is grayscale:
, for dilation take the neighborhood max,
> for erosion take the min.

