

Introduction

- Vision is the most powerful sense
- Vision is the most complicated sense
- The purpose of a general machine/computer/robot vision system is to produce a symbolic description of what is being imaged.

Machine Vision System

- A typical machine vision system :

Machine vision should be based on complete understanding of image formation

Relation to other fields:

- Machine vision vs Computer vision:
- Two terms can be used interchangeably
- Machine vision \rightarrow more constraints on the environment and focus on (industrial) applications
- Computer vision \rightarrow more generic in terms of content and applications

This course is about fundamentals of vision research

Vision and Graphics

Inverse problems: analysis and synthesis.

Image Formation

- Projection of 3-D world onto 2-D image plane
- Two crucial questions :
- What determines the position of a 3-D object point on the 2-D image plane?
- What determines the brightness of a 3-D object point on the 2-D image plane?

Camera Models

- In pin-hole camera, distant objects are observed smaller

Perspective Projection

$$
x=f \frac{X}{Z}, y=f \frac{Y}{Z}
$$

- Pin-hole camera model is called perspective projection
- It is also possible to make approximations to perspective projection
- Affine: Scene points are planar
- Weak-perspective: Scene is approximated by a plane and assumed to be far away from camera
- Orthographic : Scene is approximated to be planar and far away from camera and camera distance does not change

Affine Projection

- If all scene points are on a plane

$x=-f \frac{X}{Z_{0}}, y=-f \frac{Y}{Z_{0}} \Rightarrow m \equiv \frac{f}{Z_{0}} \Rightarrow x=-m X, y=-m Y$

Weak-perspective Projection

- Now, assume all scene points are on a plane

$x \cong-f \frac{X}{Z_{0}}, y \cong-f \frac{Y}{Z_{0}} \Rightarrow x \cong-m X, y \cong-m Y$
- This assumption can only be justified, if scene depth range is small compared to average distance from camera
- $\Delta \mathbf{Z}$ is small wrt Z_{0}

Orthographic Projection

- If scene depth range is small wrt average depth and camera distance remain at a constant distance (i.e. Z_{0} is contant)
- Choose $m=-1 \rightarrow x=X, y=Y$

Projections: Summary

Perspective:
$x^{\prime}=f \frac{x}{z}, y^{\prime}=f \frac{y}{z}$

Orthographic:

$$
x^{\prime}=x, y^{\prime}=y
$$

Perspective projection is a more realistic projection for (pin-hole) camera recordings If depth range is small compared to average distance from the camera, orthographic is also a good approximation

Brightness :

Two different brightness concepts :
-Image brightness : irradiance

Light power per unit area falling on a (image) surface
-Scene brightness : radiance

Light power per unit area emitted into a solid angle from a (object) surface

Image and scene brightness are proportional to each other
Pinhole camera needs non-zero diameter for enough light

Lenses: Deviations from the lens model

3 assumptions:

1. all rays from a point are focused onto 1 image point
2. all image points in a single plane
3. magnification is constant
deviations from this ideal are aberrations
2 types of aberrations:
geometrical : small for paraxial rays
study through $3^{\text {rd }}$ order optics $\sin (\theta) \approx \theta-\frac{\theta^{3}}{6}$
chromatic : refractive index function of wavelength

Camera Field of View

Angular measure of the portion of 3D space seen by the camera

Image Sensing :

Light photons striking a suitable (vacuum or semiconductor device) surface generate electron-hole pairs which are measured to determine the irradiance.

Quantum efficiency : ratio of electron flux to incident photon flux \& depends on energy (wavelength) of photon Solid-state devices almost ideal for some wavelengths Photographic films have poor quantum efficiency

Quantization of Image

Electrons should be measured/averaged at some predefined regions on the image sensor -> Spatial quantization

These regions can be square, rectangular or hexagonal
Each predefined region represents a pixel (picture element) location and the quantized values are pixel values (usually 0 to 255)

