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EE 583 
PATTERN RECOGNITION

Feedforward Neural Networks

Multilayer Feedforward Network 
Structure

Training of Feedforward Networks

Practical Techniques for Improvement

METU EE 583 Lecture Notes by A.Aydin ALATAN © 2011

Overall Feedforward Structure
� A typical multilayer feedforward network structure

Hidden LayersInput Layer Output Layer

� Training of such a network is necessary to determine 
the unknown weight values
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Overall Feedforward Structure
� Feedforward networks consist of two or more 

layers of processing units with implied 
directionality of the connections having no 
feedbacks

� The layers of feedforward networks :
� Input Layer : Role is only to “hold” the values and 

distribute them to next layers
� Output Layer : The layer at which the final state of the 

network is read.
� Hidden Layer(s) : The layers between input and output 

layers, which are connected using weighted links to the 
higher levels.  

These internal layers should remap the inputs and results of 
previous layers to achieve a more seperable (classifiable) 
representation of data
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Feedforward Operation

� Solving XOR problem using a 3-layer net
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Hidden Layers
� There are two important questions which determine the 

structure of a neural network :
� How many hidden layers are needed?
� How many units should be in a hidden layer?

� There is a (non-constructive) existence proof by Kolmogorov:
Given any continuous function, f:Id�Rc , f(x)=y where I is the closed 

unit interval  [0,1], f can be implemented exactly by a 3-layer neural 
network having

d processing elements in the input
(2d+1) processing elements in the single hidden
c processing elements in the output layer
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…. but no indication for how to construct hk(.) and ψj,k(.) functions 
from a given g(.)function !
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Training Feedforward Network (1/5)

� Delta and Generalized Delta Rules use gradient 
descent to achieve training

� The basic operation (Backpropagation Algorithm)
1. Apply (training) stimulus to network
2. Feedforward (propagate) input to determine outputs
3. Compare outputs against the desired response
4. Compute and propagate error measure backward through 

network while minimizing error at each stage via weight 
adjustments

� Terminology is as follows :

output system desired :

ightsnetwork we :

(cx1)pattern output  :

 (dx1)pattern input  :

t

w

o

i

� Weight wji is defined 
FROM unit-i TO unit-j
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Training Feedforward Network (2/5)
� Assume a 2-layer network with no hidden units

� Assume n input-output pairs for training

� A product-based weight correction 
strategy :
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� Reasoning behind the above correction strategy :
� if iip>0 then weight must increase (decrease) to make oj

p reach 
the desired response tj

p

� if iip<0 then weight must work in the reverse way
� if iip=0 then no correction (not desirable)

� The same training strategy can be 
applied after using the whole training 
set (epoch) at each weight update
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Training Feedforward Network (3/5)
� Lets formalize the previous weight correction strategy :

� The relation between output error Ep and weight wji can 
be written as 

2

2

1
)(

2

1
: ppTp

p
ppp eeeEotevectorError ==⇒−≡

ji

p

w

E

∂
∂

� This relation can be written in the form below (via chain rule) :

ji

p
j

p
j

p
j

p
j

p

ji

p

w

net

net

o

o

E

w

E

∂
∂

∂
∂

∂
∂

=
∂
∂ wji ji

Input  i Oj

netj

function abledifferenti ingnondecreas a is f where)( jjj

i
ijij

netfo

iwnet

=

=∑



5

METU EE 583 Lecture Notes by A.Aydin ALATAN © 2011

Training Feedforward Network (4/5)

� Each term in the equation above can be written  as :
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Training Feedforward Network (5/5)

� Delta Rule : In order to minimize 
Ep wrt wji, move (create an update 
term) in the direction of the 
negative gradient of Ep :
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Generalized Delta Rule 
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� Back Propagation Algorithm :
1. Give training stimulus, obtain outputs 
2. Update weights of output layer using Delta Rule
3. For hidden layers, use Generalized Delta Rule
4. Stop if error is insignificant; else goto step 1 
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Training Protocols

� There are three important training protocols for 
supervised training of a feedforward network
� Stochastic training

� Training patterns are chosen randomly from the training set
� Networks weights are update after each pattern

� Batch training
� All patterns are presented to the network before learning
� Update terms are summed up for all data and added after one 

“epoch” (a single presentation of all elements of training set)

� On-line training
� Each pattern is presented to the system one and only one time
� No use of memory/storage for storing training data

� Stopping is usually achieved when the change in Ep
between two epoch is less than a threshold δ
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Backpropagation as Feature Mapping

� For XOR problem, the outputs of hidden layers 
become linearly separable after iterations   �

� As another example, a sigmoidal network with 
topology 2-3-1 performs better to that of2-2-1
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Practical Techniques for Improving 
Performance of Feedforward Nets

� During training of a neural net, the process can
� be very slow (perhaps stuck in a local minimum)
� becomes unstable
� oscillating between solutions

� Some possible “rule-of-thumbs” to find a “good” solution
� Choose a “good” activation function
� Scale your input
� Train with noise and manufactured data
� Modify the number of hidden units and hidden layers
� Check the initial weight values
� Modify the learning rate
� Use momentum or corresponding weight
� Decay your weights
� Add some classification hints to make training easier
� Stop training if the system becomes memorizing (over-fitting)
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Practical Techniques : Activation Function

� Backpropagation works on any activation 
function, if f is a continuous non-linear function 
with its derivative existing 

� partially continuous case requires extra constraint

� An important property of f : 
� saturation � weights will be bounded

� Monotonic function (f’ (.)>0 or f’ (.)<0 ) is 
preferred but not essential 
� with non-monotonic functions, extra local minima may 

occur in the error surface)

� A function, satisfying all the above properties 
� Sigmoid function: 
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Practical Techniques : Scaling Input

� Different features, whose numerical values are different on 
the order of magnitude from each other, will create a bias 
during training
� Weight adjustment will favor feature with larger numbers

� In order to avoid such problems, normalize features such that
� the mean of the features for the training data is zero
� the variance is adjusted a predetermined value

� Such an approach is only possible for the batch systems; 
� For on-line data, such a normalization may not be useful

� Output target values should be chosen to be ±1, although the 
saturating value of the sigmoid is 1.716 (as input � ∞)
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Practical Techniques : Artificial Train Data 

� If the training set is small, one option is to 
generate some “virtual” training data by adding 
some Gaussian noise on top of the available data
� the training set increases 

� If one has information about the sources of the 
variation among patterns, manufacturing training 
data might be preferable
� e.g. rotating a pattern will generate manufactured data
� a drawback is memory requirements and overall a slow 

training 
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Practical Techniques : Hidden Units

� The number of input and output units are determined by 
dimension of the input data and number of categories, 
respectively

� The number of hidden units, nH , is related with the 
complexity of decision boundary 
� If data is well (linearly) separated � nH might be small

For a 2-nH-1 network, the cost 
function (per training data) :

- always decrease for training data 

- may increase for test data after 
some value of nH (memorization)

� Another approach is to adjust the complexity of the network 
� start with large number of units, then prune weights
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Practical Techniques : Hidden Layers

� The theorem by Kolmogorov indicates the sufficiency of 3 
layers (a single hidden layer) for representing any function

� However, in practice for some cases, more than 3 layers may 
be required

� One possible requirement is due to learning of some invariants 
within a limited range of parameters at every layer
� e.g.  Character Recognition : a single hidden layer can learn  

characters which are translated for up to n pixels. Multiple 
layers may increase this  limit of translation

� Networks with multiple hidden layers are found out to be 
trapped into local minima more often

� In case of absence of a problem specific reason, the first 
case to check should consist of a single hidden layer 
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Practical Techniques : Initialize Weights

� Never initialize weights to zero ! � zero weight updates

� Initial weights should be selected such that they yield to 
“uniform learning”  
� All weights reach to equilibrium values at the same time

� Choose weights randomly from the same distribution

� Since the scaled data is zero mean (+ and – values), the weights 
should also change between –wm<w<+w m

� If wm is too small � stuck in linear region of activity fnct.
� If wm is too large � saturation before learning

� In order to obtain –1<net<+1 at the input of a unit with d 
connections from input layers with scaled unit variance
� –1/√ d < w < +1/√ d

� Similarly, for the output layer for a network with nH units in 
the hidden layer, the initialization should be
� –1/√ nH < w < +1/√ nH
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Practical Techniques : Learning Rates

� In principle, if enough time is spent to let a network to reach 
its minimum error, parameter for learning rate, ε (or η) , can be 
selected as any small value, but in practice this is not the case 

� Optimal learning rate is the one that leads to local error 
minimum in a single step

� If the criterion function can be approximated by a quadratic, 
the optimal parameter is obtained using 2nd order derivatives :
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� In practice, ε = 0.1 is often enough as a first choice
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� If there are too many weights, the error surface will consist 
of regions with small slope, in which weight update is slow 

� In order to add momentum to weight update process at (n+1)th

iteration, the correction is modified :
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� For positive alpha, the second term yields 
a correction that is somewhat larger (in 
the same direction) than the case 
without a momentum term

� Momentum term may
� prevent oscillations
� help escaping local minima (momentum 

built-up during entry into minima from one 
side may be enough to make it escape 
from the other side of local minima)

Practical Techniques : Adding Momentum
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� One method of simplifying a network and avoiding overfitting 
is to
� begin from a network with too many weights,
� “decay” every weight at each weight update by 

wnew = wold (1- β) (0<β<1) 
� eliminate some of the weights with very small values,

� The weights which are really necessary will stay indefinitely
� It can be shown that such an approach is equivalent to a cost 

function to be minimized :
Jef = J(w)+ ρ wtw

� The system achieves a balance between pattern error and 
overall weight

� Although, there is no reason for such a method to always
improve system performance, for most of the cases, this 
method yields improved results 

Practical Techniques : Weight Decay
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� In some problems, it is possible to add some extra 
information during training to improve the classification 
performance

� Some properties of the input data can be used during training 
as a “hint” to the system, so that better classification can be 
achieved

Practical Techniques : Hints

� After training stage, the hint outputs are neglected in the 
classification stage

� A typical example is the problem of classification of c 
phonemes 
� add 2 hint classifying outputs for vowel and consonants
� distinguish   /b/ from /oo/   or   /g/ from /ii/    better

Note that input to hidden 
layer weights will improve
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� Excessive training can lead to poor generalization as the 
system implements a complex decision boundary

� In such a case, the system is simply “tuned” to the given data

� For linear discriminant functions, there is no such problem, 
since the boundaries are always hyperplanes

� A simple method for avoiding this problem is to stop when the 
error on a separate validation set reaches a minimum

Practical Techniques : Stopped Training


