

EE 583 PATTERN RECOGNITION

SyntPR: Graphical Approaches
Graph-based Structural Representations
Graph Isomorphism
Relational Graphs
Examples

Introduction

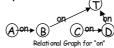
- Higher dimensional grammars are needed to be able to represent complex structures
- Parsing is a good tool for comparing string grammars
- For higher dimensional tree/graph grammars, graph similarity should be defined as a measure of similarity
- Among different trees/graphs (classes), the best match for a given input should be found based on such a measure

Graph Theory: Definitions (1/2)

- A graph, G is represented using a set of nodes (vertices), N and edge set (arcs), R as G={N,R} where R is a subset MxN
 - In SyntPR applications nodes represent the pattern primitives whereas t edges give the structural information
- A subgraph of G is itself a graph $G \in \{N_s, R_s\}$ where $N_s \in R_s$ are subsets of $N \in R_s$, respectively
- A graph is connected if there is a path between all pairs of its nodes
- A graph is complete if there is an edge between all pairs of its nodes
- A directed graph (digraph) is defined similar to a graph except the pair (a,b), which is an element of R, is defined as an edge from b

Graph Theory: Definitions (2/2)

- A relation from set A to set B is a subset of AxB
 - e.g. Relation "lies on" : R={(rug,floor),(chair,rug),(person,dhà)}
 - Note that relations has a direction: (floor, rug) not element lef
 - Usual notation using functions f: → B, b=f(a) (function==relation)
 - Relations can be higher dimensional: for $(A(xB)xC)xD) \rightarrow (a,b,c,d)$
- A relational graph represents one particular relation graphically by using an arrow to show this relation between the elements using a directed graph



- A semantic net is a relational graph shows all the relations between its nodes using some labels
- A tree is a finite a finiteacyclic (containing no closed loops or paths or cycles) digraph

Comparing Relational Graph Descriptions

- The observed data usually does not matchexactly to a stored relational representation, hencesimilarity should be measured
- One approach is to check whether the observed data to match a portion of the relational model
 - Case 1 : Any relation not present in both graphs failure
 - Case 2 : Any single match of a relation success
 - A realistic strategy is somewhere in between these extremes
- For comparing relations adjacency matrix can be used:
 A digraph G with p nodes can be converted into a matrix by
 - Numbering each node by an index [1,...,p]
 - Representing the existence(bsence) of an edge between any nodes in G viaAdj(i,j)=1 (Adj(i,j)=0) if G (does not) contains an edge from node j to node i

Graph Isomorphism

- Consider two graphs, $G=\{N_1,R_1\}$ and $G_2=\{N_2,R_2\}$
- A homomorphism from G_1 to G_2 is a function f from N_1 to N_2

$$(v_1, w_1) \in R_1 \Longrightarrow [f(v_1), f(w_1)] \in R_2$$

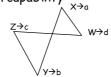
• An isomorphism from G_1 to G_2 is a function f from N_1 to N_2 where f is required to be 1:1 and onto

$$(v_1, w_1) \in R_1 \Leftrightarrow [f(v_1), f(w_1)] \in R_2$$

- Isomorphism simply states that elabeling of nodes yields the same graph structure
- Unfortunately, determining graph isomorphism can be computationally expensive

Determining Isomorphism (1/2)

- Given two graphs, $G=\{N_1,R_1\}$ and $G_2=\{N_2,R_2\}$ each with p nodes, an easy method to check isomorphism:
 - 1) Label the nodes of each graph with labels 1,2,...,p
 - Form the adjacency graph matrices, 1 Mand M2, for two graphs
 - If $M_1=M_2$, then G and G_2 are isomorphic
 - 4) If M_1 is not equal to M_2 , consider all p! possibleabelingson G_2
- Note that
 - Complexity of finding isomorphism is guite high



Determining Isomorphism (2/2)

There are some invariant properties which are preserved under graph isomorphism :

- number of nodes,
- number of arcs,
- in-degree of a vertex,
- out-degree of a vertex,
- closed path of length l
- An alternative method is to find G_2 unisomorphic by finding at least one property (e.g. equal number of vertices) that all isomorphic graphs must share but G_2 do not.
- G_1 and G_2 are called *subisomorphic* if a subgraph of G_1 is isomorphic to a subgraph of G_2

Extensions to Graph Matching Approach

Since simple matching of two graphs is not practical, some extensions are proposed to define a measure between graph similarity

- Extract some-not pattern but graphfeatures from Gand G_2 to form feature vectors \mathbf{x}_1 and \mathbf{x}_2 , respectively. Then us 6 tatPR techniques to compare \mathbf{x}_1 and \mathbf{x}_2 .
- Use a matching metric as the minimum number of transformations required to transform Anto G_2 , such as
 - node insertion
 - node deletion
 - node splitting
 - node merging
 - edge insertion
 - edge deletion
- Note that
 - Computational complexity is still high
 - Difficulty in designing distance measure which will label allowe structural deformations as similar and label those that represe different classes as dissimilar

Relational Graph Similarity (1/2)

- Given a set of nodes N, corresponding relational descriptions is defined as a set of relations $P_{\Gamma}\{R_1,R_2,...,R_n\}$ where each relation $R_i\subseteq N\times N$ (in general $R_i\subseteq N\times N$... $\times N$)
- Given two node sets A and B with |A|=|B|, corresponding relational descriptions $D_A=\{R_1,R_2,...,R_n\}$ and $D_B=\{S_1,S_2,...,S_n\}$, we may seek for a measure of similarity
- Based upon theith relation R_i in D_A and ith relation S_i in D_B , structural error, E^i , which is a function of f, is defined as

$$E^{i}(f) = |R_{i} \circ f - S_{i}| + |S_{i} \circ f^{-1} - R_{i}| \quad where$$

$$R \circ f = \{(b_{1}, b_{2}, ..., b_{k}) \in B^{k} \mid \exists (a_{1}, a_{2}, ..., a_{k}) \in A^{k}\} \quad with \ f(a_{i}) = b_{i} \quad i = 1, 2, ..., k$$

- $E^i(f)$ simply measures the number of elements iR_i that are not in S_i PLUS the number of elements irS_i that are not inR_i
- For a given f, two node sets A and B is compared wrt ith relation using E(f)

Relational Graph Similarity (2/2)

$$E^{i}(f) = |R_{i} \circ f - S_{i}| + |S_{i} \circ f^{-1} - R_{i}| \quad where$$

$$R \circ f = \{(b_{1}, b_{2}, \dots, b_{k}) \in B^{k} \mid \exists (a_{1}, a_{2}, \dots, a_{k}) \in A^{k}\} \quad with \ f(a_{i}) = b_{i} \quad i = 1, 2, \dots, k$$

 Total structural error, E(f), simply the sum of all structural error for each relations for a given

$$E(f) = \sum_{i=1}^{n} E^{i}(f)$$

• Relational distance, RD, between D_A and D_B is defined as

$$RD(D_A, D_B) = \min_{f} E(f)$$

- Note that if any f may be found, such that D is isomorphic to D_R , then RD is equal to D
- If they are not isomorphic then RD will give a value according to the "difference" between two graphs

Attributed Graphs (1/2)

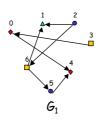
The representation of pattern structure can be improved by including numerical/symbolic attributes of pattern primitivesai graph

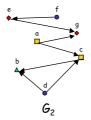
- An attributed graph, G_i , is a 3-tuple: $G_i=\{N_i,P_i,R_i\}$ where
 - N_i: a set of nodes
 - P_i: a set of properties of these nodes
 - R_i: a set of relations between nodes
- Let piq(n) be the value ofqth property of node n of grapl6i.
- Nodes η and n_2 (on G_1 and G_2) are said to form anassignment if $p_q^1(n_1) \sim p_q^2(n_2)$ (\sim denotes similarity)
- Let $r_i(n_x,n_y)$ be the jth relation between nodesn_x and n_y of graph G_i
- While comparing G and G_2 , two <u>assignments</u> (n_1, n_2) and (n_1', n_2') are considered *compatible* if $r_j^1(n_1, n_1') \sim r_j^2(n_2, n_2')$ for all j
- Two attributed graphs, Gand G2, are isomorphic if there exists a set of 1:1 assignments of nodes in G to nodes in G, such that all assignments are compatible

Attributed Graphs (2/2)

Example: For the given 2 attributed graphs, $_{1}G$ and G_{2} ,

- Node properties denoted by different shapes and colors
- The single relation is shown by the arcs connecting the nodes





Assignments = { ($0^{\circ}e$), ($0^{\circ}g$), ($1^{\circ}b$), ($2^{\circ}f$), ($2^{\circ}d$), ($3^{\circ}e$), ($3^{\circ}e$), ($4^{\circ}e$), ($4^{\circ}g$), ($5^{\circ}d$), ($5^{\circ}f$), ($6^{\circ}e$), ($6^{\circ}e$)} Compatibility= { [(6,1)~(e,b)], [(2,6)~(d,e)], [(5,4)~(f,e)], [(0,4)~(e,g)], [(3,0)~(a,g)], [(2,1)~(d,b)] [(0,1)~(e,b)], [(0,1)~(g,b)],(all the compatible unconnected assignments).....}

Two graphs are not isomorphic since there is no set of 1 $\,$ -1 assignments between the nodes of $\,$ G_1 and $\,$ G_2 , such that all assignments are compatible

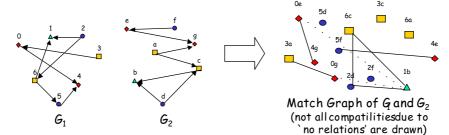
Comparing Attributed Graphs (1/3)

A less rigorous test of similarity is also required for attribudt graphs, as in the case of relational graphs

- Extract some-not pattern but graph features from Gand G₂ to form feature vectors 1and 2₂, respectively. Then, useStatPR techniques to compar 1and 2₂.
- Use a matching metric as the minimum number of transformations required to transform ${}_1\Theta$ nto G_2
- A better way to check similarity of two attributed graphs is obtained by beginning from (not all the nodes but) the nodes belonging to the <u>maximal cliques</u> of the <u>match graph</u>
 - A clique of a graph G is a totally connectedubgraph
 - A maximal clique is not included in any other clique
 - A match graph (MG) is formed from two graphs Gand G₂ by
 - Nodes of MG areassignments from G_1 and G_2 , respectively
 - An edge in the MG exists between two nodes if the corresponding assignments are compatible

Comparing Attributed Graphs (2/3)

Example: For the previously given 2 attributed graphs, and G_2 ,



 $Assignments = \{ (\ 0^{\circ}e), (0^{\circ}g), (1^{\circ}b), (2^{\circ}f), (2^{\circ}d), (3^{\circ}a), (3^{\circ}c), (4^{\circ}e), (4^{\circ}g), (5^{\circ}d), (5^{\circ}f), (6^{\circ}a), (6^{\circ}c) \} \\ Compatibility = \{ [(\ 6,1)^{\circ}(c,b)], [(2,6)^{\circ}(d,c)], [(5,4)^{\circ}(f,e)], [(0,4)^{\circ}(e,g)], [(3,0)^{\circ}(a,g)], [(2,1)^{\circ}(d,b)] \\ [(0,1)^{\circ}(e,b)], [(0,1)^{\circ}(g,b)],(all the compatible unconnected assignments)......} \}$

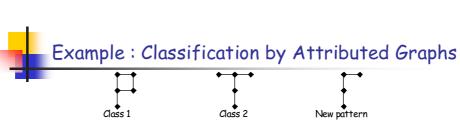
Comparing Attributed Graphs (3/3)

Measuring the transformation difference between graphs

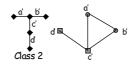
- In order to transform graph G_i to graph G_i , a similarity measure $D(G_i, G_i)$ must be defined with these properties:
 - $D(G_i, G_i) = 0$
 - $D(G_i, G_i) > 0$ for inot equal to j
 - $D(G_i, G_j) = D(G_j, G_i)$ (equal to costs for insertion/deletion)
 - $D(G_i, G_i) \cdot D(G_i, G_k) + D(G_k, G_i)$ (triangle inequality)

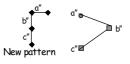
Distance measure can be defined as

 $D = \min_{x} \{D_s(x)\} \quad \text{where } D_s(x) = w_{ni}c_{ni} + w_{nd}c_{nd} + w_{ei}c_{ei} + w_{ed}c_{ed} + w_{n}c_{n}(x)$ $w: \text{weight for corresponding transformation} \quad \text{ni : node insert, } \quad \text{nd : node delete}$ $c: \text{cost for corresponding transformation} \quad \text{ei : edge insert, } \quad \text{ed : edge delete}$ $c_n(x) = \sum_{i} f_n(p_i, q_i) \quad \text{where } f_n(p_i, q_i) \text{ similarity measure between } p_i \text{ of } G_i \text{ and } q_i \text{ of } G_j$ x: denotes a node mapping (configuration) between two graphs

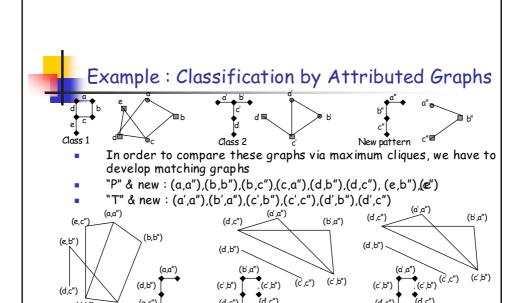


- For each pattern, a label is placed on each line segment, thus specifying an attribute indicating segment orientation
- Attributed segments (horizontal & vertical) form graph node
- Symmetric/undirected relation of "attached" is used





- Some of the previously mentioned matching methods can be used to compare the graphs above
 - Determine subisomorphism
 - Use features extracted from these graphs, such as # of nodes



- The maximum cliques of both Match Graphs have a cardinality = 3
 - → Choose one of the two arbitrarily