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Introduction

= Higher dimensional grammars are needed to
be able to represent complex structures

= Parsing is a good tool for comparing string
grammars

= For higher dimensional tree/graph grammars,
graph similarity should be defined as a
measure of similarity

= Among different trees/graphs (classes), the

best match for a given input should be found
based on such a measure




iM Graph Theory : Definitions (1/2)

= A graph, G is represented using a set of nodes (vertices), N and edge
set (arcs), R as 6={N,R} where R is a subset dfixN

= InSyntPRapplications nodes represent the pattern primitives whereas t
edges give the structural information

= A subgraph of G is itself a graph &{N,,R.,} where N & R, are subsets
of N & R, respectively

= A graph isconnected if there is a path between all pairs of its nodes
= A graph iscomplete if there is an edge between all pairs of its nodes

= A directed graph(digraph) is defined similar to a graph except the
pair (a,b), which is an element of R, is defined as an edge fromto b

Graph Theory : Definitions (2/2)

m A relation from set A to set B is a subset ofAxB
= eg.Relation "lies on" : R={(rug,floor),(chair,rug),(person,chd}
= Note that relations has a direction: (floor,rug) not element Rf
= Usual notation using functions f:#B, b=f(a) (function==relation)
= Relations can be higher dimensional : for @&B)xC)xD) - (a,b,c,d)
= A relational graph represents one particular relation
graphically by using an arrow fo show this relation between the

elements using a directed graph
/m/@zn

T Cle

Relational Graph for “on"

= A semantic net is a relational graph shows all the relations
between its nodes using some labels

= A freeis a finite a finiteacyclic (containing no closed loops or
paths or cycles) digraph




Comparing Relational Graph Descriptions

= The observed data usually does not matclexactly to a stored
relational representation, hencesimilarity should be measured

= One approach is to check whether the observed data to match
a portionof the relational model
= Case 1: Any relation not present in both graph2 failure
= Case 2 : Any single match of a relatio®® success
= A realistic strategy is somewhere in between these extremes

= For comparing relations adjacency matrix can be used :
A digraph 6 with p nodes can be converted into a matrix by
= Numbering each node by an index [1,... p]

= Representing the existencedbsence) of an edge between any
nodes in 6 viaAdj(i,j)=1 (Adj(i,j)=0) if & (does no?) contains an
edge from node j to node i

Graph Isomorphism

= Consider two graphs, G={N, R;} and 6,={N,,R,}
= A homomorphism from &, fo 6,is a function f from N fo N,

(v, W) OR O [f(w), F(w)IOR,
= An /somorphism from G, fo G, is a function f from N to N,
where f is required to be 1:1 and onto

(V1’V\ﬁ) O Rl < [f (Vl)’ f(Wl)] O Rz
= Isomorphism simply states thatrelabelingof nodes yields the
same graph structure

= Unfortunately, determining graph isomorphism can be
computationally expensive

N = A




Determining Isomorphism (1/2)

1
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Given two graphs, G={N, R;} and 6,={N,,R,} each with p nodes,

an

Note that

easy method fo check isomorphism :

Label the nodes of each graph with labels 1,2,.. p

Form the adjacency graph matrices,Mind M, , for two graphs
If M=M, , then Gand G, are isomorphic

If M;is not equal to M , consider all p! possibléabelingson 6,

Complexity of finding isomorphism is quite high
Inpractice, all the existing relations may not be observed dte

effects of noise or structural deformations, hence isomorphism
is quite rigorous for a similarity measure without any error

correction capability
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Determining Isomorphism (2/2)

There are someinvariant propertieswhich are preserved
under graph isomorphism :

number of nodes,
number of arcs,
in-degree of a vertex,
out-degree of a vertex,
closed path of length |

An alternative method is to find @nd &, unisomorphicby
finding at least one property (e.g. equal number of vertices)
that all isomorphic graphs must share but&nd G, do not.

6,and 6, are called subisomorphic if a subgraphof 6, is
isomorphic to asubgraphof G,




Extensions tfo Graph Matching Approach

Since simple matching of two graphs is not practical, some
extensions are proposed to define a measure between graph
similarity
Extract some-not pattern but graphfeatures from Gand G, to form
feature vectorsx;and x,, respectively. Then us&tatPR techniques to
comparex;and x;,.
Use a matching metric as the minimum number of transformations
required to transform @nto G, , such as
node insertion
. node deletion
node splitting
. node merging
edge insertion
. edge deletion
Note that
Computational complexity is still high
Difficulty in designing distance measure which will label alldwe

structural deformations as similar and label those that reprdse
different classes as dissimilar

Relational Graph Similarity (1/2)

Given a set of nodes N, corresponding relational descriptions
is defined as a set of relations Rr{R;,R,,..,R,} where each
relationR; 0 NxN (in general R; 0 NxN..xN )

Given two node sets A and B with |A|=|B|, corresponding
relational descriptions ={R,,R,,..,R,} and B,={5,,5,,..,5,}, we
may seek for a measure of similarity

Based upon theith relationR; in D, and it relationS; in Dy,
structural error, Ei, which is a function of 7, is defined as

E'(f)s|Rof-S|+|Seof™-R| where

Ro f ={(by,by,....b)0B" | da,a....,a) DAY with f(a)=hb i=12,...k

Ei(f) simply measures the number of elements iR; that are
notinS, PLUS the number of elements ir5; that are not inR;
For agiven £, two node sets A and B is comparedvrt it
relation usingEi(f)




Relational Graph Similarity (2/2)

E'(f)5|Rof-S|+|Scf"~R| where
Ro f ={(bybs,...b) 0B |Ha,&,...a) DAY with f(a)=h i=12...k

Total structural error, E(f), simply the sum of all structural
error for each relations for a givenf

E(f)= E'(f)

Relational distance, RD, between D, and Dy is defined as
RD(D,,D;) = mfin E(f)

Note that if any# may be found, such that Q is isomorphic

to Dy , then RD is equal to O

If they are notisomorphic then RD will give a value according
to the "difference” between two graphs

Attributed Graphs (1/2)

The representation of pattern structure can be improved by
incluﬂing numerical/symbolic attributes of pattern primitivesd
grap
An attributed graph, G, is a 3-tuple: 6;={N, PR} where

. N:: a set of nodes

. P, : a set of properties of these nodes

. R; : a set of relations between nodes

Let piy(n) be the value ofg™ property of node n of graplé;

Nodes n and n, (on G, and G,) are said to form anassignment if
ply(ny) ~ p?(n;) (~ denotes similarity)

Letrij(n,n ) be the j"h relation between nodes, and n, of graph6,
While comparing @and G, two assignments(n;, n,) and (nj, n',) are
consideredcompatible if r'(ny,n’;) ~ ré,(ny,n’;) for all j

Two attributed graphs, @and G,, are isomorphic if there exists a
set of 1:1gssignmentsof nodes in G to nodes in G, such that all
assighmentsare compatible




Attributed Graphs (2/2)

= Example: For the given 2 attributed graphs, @nd G,,
. Node properties denoted by different shapes and colors
. The single relation is shown by the arcs connecting the nodes

Assighments = {( O~e), (0~g), (1~b), (2~f), (2~d), (3~2), (I~0), (4~e), (4~g), (5~d), (5~F), (0~0), (5~0)}
Compatibility={ [( ©,1)~(c,b)], [(2,0)(d,)]. [(5.4)~(f )], [(0,4)(e.q)], [(*.0)(.9)] [(2,1)~(d.b)]
[(0,1)~(e,b)], [(0,1)(g,b)], ......(all the compatible unconnected assignments)......}

Two graphs are not isomorphic since there is noset of I -1 assignments between the nodes of ~ &; and
G,, such that all assignments are compatible

Comparing Attributed Graphs (1/3)

A less rigorous test of similarity is also required for attritzudf
graphs, as in the case of relational graphs
= Extract some-not pattern but graphfeatures from Gand 6, to
form feature vectorsc;and x,, respectively. Then, useStatPR
techniques to comparex;and x,.
= Use a matching metric as the minimum number of
transformations required to transform,énto G,

= A better way fo check similarity of two attributed graphs is
obtained by beginning from (not all the nodes but) the nodes
belonging to themaximal cliqguesof the match graph
= A cligue of agraphG is a totally connectedubgraph
= A maximal cligue is not included in any other clique
= A matchgraph(MG) is formed from two graphs gand 6, by
= Nodes of MG areassignmentsfrom G and 6, , respectively

= Anedgein the MG exists between two nodes if the corresponding
assignmentsare compatible




Comparing Attributed Graphs (2/3)

= Example: For the previously given 2 attributed graphs; @nd G,,

Match Graph of Gand G,
(not all compatilitiesdue to
*no relations’ are drawn)

Assighments = {( O~e), (0~g), (1~b), (2~f), (2~d), (3~2), (I~0), (4~e), (4~g), (5~d), (5~F), (0~0), (5~0)}
Compatibility={ [( ©,1)~(c,b)], [(2,0)(d,)]. (5. 4)~(f )], [(0,4)(e.q)], [(*.0)(.9)] [(2,1)~(d.b)]
[(0,1)~(e,b)], [(0,1)(g,b)], ......(all the compatible unconnected assignments).....} }

Comparing Attributed Graphs (3/3)

Measuring the transformation difference between graphs
= Inorder to transform graph5, to graphG;, a similarity
measure DG;, 6;) must be defined with these properties :
« D(6,6):=0
= D(6,6))>0 for inot equal toj
. D(6,, 6;) = D(6;,6) (equal to costs for insertion/deletion)
D(6,, 6)) < D(6:,6,) + D(G, 6)) (triangle inequality)

. Distance measure can be defined as

D =min{Dy(x)}  whereD;(x) = WiCni * WaCna + WeiCei + WeaCea + WCn (X)

w: weightfor corresponidg transfornation ni : nodensert, nd: nodedelete

¢ costfor corresponidg transfornation ei: edgensert, ed:edgedelete

&) =) fulp.a) wheref.(p.q;) similarity measurdetweenp, of G andg; of G,
X : denotes.nodemapping(configurdion) between tvegraphs




Example : Classification by Attributed Graphs

.

Class 1 Class 2 New pattern

. For each pattern, a label is placed on each line segment, thus
specifying an attribute indicating segment orientation

= Attributed segments (horizontal & vertical) form graph node
Symmefr'ic/undir'ecfed relation of “a‘r’rached" is used

@
g@ > b"
I New paﬁ'er‘n <

= Some of the previously mentioned matching methods can be
used to compare the graphs above
= Determinesubisomorphism
= Use features extracted from these graphs, such as # of nodes

Class 1

Example CIassn‘uca’non by Aﬁmbu’red Graphs

@
b
b b’
@ c" >
Class 1 Class 2 New pattern ¢

In order to compare these graphs via maximum cliques, we have to
develop matching graphs

O “P" & new : (a,a"),(b,b"),(b,c")(c.a"),(db"),(d,.c"), (e,b") (&)

™ \\Tll & new : (a’ II) (bl ll) (Cllbll) (Cl ll) (d bll) (dl ll)
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] The maximum cliques of both Match Graphs have a cardinality = 3
= Choose one of the two arbitrarily




