EE 583
PATTERN RECOGNITION

Non-metric Methods
Decision Trees
Syntactic (6Grammatical) Methods

Elements for Formal Grammars
Examples for Pattern Description

Decision Trees

» It is natural to classify/describe pattern through a
sequence of "questions”

> Decision tree
consisting of root node, branches, leaf nodes

level 0

level |

Watermelon Apple Grape @ Banana  Apple 0@ level 2

simall sweer SOUr

Grapefruit Lemon Cherry  Grape  |evel 3

= Apple= ( green AND medium) OR (red AND medium)




Classification and Regression Trees (CART)
= How to create a decision tree from training data?

= A decision tree will progressively split training data
intfo smaller subsets

= If subset is pure > terminate that tree portion (i.e. become a
leaf node)

= Otherwise, grow the tree with more nodes

= A general framework : CART

= How many splits will be at each node?
Which property should be tested at each node?
When does a node become a leaf?
How to prune a large tree?
If a leaf node is impure, how to assign labels?
How to handle missing data?

CART : Number of Splits

= Splitting the training data at each node
= Branching factor

= It is possible to express any problem using binary trees

color = Green?

Grapefruit Lemon Cherry  Grape




CART : Query Selection

= The property to be tested at any node is the
fundamental problem

= If the query at each node is of the form x < X, then

= With a sufficiently large tree, any decision boundary
can be approximated arbitrarily well

CART : Node Impurity

= Fundamental principle for tree creation : simplicity

= A query is required at each node, makes data reaching
its immediate descendants to be as "pure” as possible

= A measure of /impurity, i(N) of node N is necessary
= Ideally, i(N)=0: i.e. all patterns at node N belongs to same class
= Let P(w) be the ratio of patterns at node N belong to class wi.

i(N)= —Z P(w;)log, P(w;) Entropyimpurity
j

i(N) = P(w,)(w,) Giniimpurity for 2- class
i(N) = Z P(w)(w,) Giniimpurity for c-class
iz]
i(N)=1-maxP(w,) Misclassifcationimpurity
]

= Based on these definitions, how
to choose the threshold for a
query at any node?




CART : Node Impurity

The drop in impurity at node N (N, and Nrare descendants)
Ai(N) = i(N) =P_i(N) — (1 —Pg) i(Ng)

At each node N, among different query thresholds,

maximize 4i(N)

Note that maximization is locally (not globally) optimal

For c-class problem, one approach is twoing:

= Let C={w,, ....w}, C;={wy, ...w} and C,=C-C,

= For every split, compute impurity drops for C,C,;
= Maximize wrt thresholds and selection of C,.C,.

CART : Criteria for Stop Splitting

The traditional approach is to use a validation set (%p of
training data & not used during tree creation)

. Iflvalidaﬁon set error is minimized - continue to
split

If best drop in impurity is < B at node N - stop split

If "number of remaining training patterns at node N" < &

- stop split

Minimize a global criterion: o (size of tree} X i(N)

= Relation to Minimum Description Length (MDL)

Check whether a split is "meaningful” by comparing to a
random split.




CART : Pruning

When a split stops at node N, there could be loss of
possible beneficial splits in the descendant nodes.

Principal alternative to stop splitting in a decision free :

Pruning

= A freeis grown fully until all leaf nodes have
minimum impurity

= Then, all pairs of neighboring leaf nodes are
examined for elimination using impurity check

No requirement for a validation set, but complex

CART : Assignment of Leaf Node Labels

Assignment of class labels at leaf nodes is easy, if their
impurities are zero.

With a positive impurity at a leaf node, this node should
be labeled by a class with the most points represented

Problem of instability in T L

CART classifiers : |

= Even a single training
point can lead o a
different decision

boundary " .
Example on the right > | ws L
= Entropy impurity is used

and there is only a single

data difference between — ..




CART : Feature Selection

Feature selection is critical, as expected.

Principal Component Analysis of the feature vector
could be preferable due to obtaining important axes.

Linear combinations of features also improve results
= Weights of a general linear classifier is estimated

Recognition with Strings

Suppose patterns are represented by ordered
sequences or strings of discrete items (characters)

Typically, these discrete items are non-numeric and
there is no notion of distance between strings

Important Problems

String matching

Edit distance

String matching with errors

String matching with don't-care symbols




String Matching
test [a] 5] ] <] 2 | EIEIE =] =] <[ [ =] ]

=3
x ——»|b|d|lajc

= Apart from ndive string matching, there are more
sophisticated matching algorithms

= Boyer-Moore algorithm : Works in reverse order

bad character —_ good sufpx

= Instead of shifts by a EOCCCEECCH - REOoREEooEaCCE
single character, — [
multiple character
shifts are achieved [ le=lela el [ E e Bl = [ el= [ =] [=[ =l [t [=[= ] E[=]=]
s Good suffix and bad [
character heuristics try
to detect mismatches GLEEEREEEEE R LR
and proceed multiple BT

characters

Edit Distance

= Given two strings x and y, compute the minimum number
of basic operations, such as character /insertions,
deletions and exchanges, to transform xinto y.

= Edit distance calculation : e.g. excused> exhausted
= excused> exhused> exhaused> exhausted
= 1exchange?1linsert 21 insert

l deletion:
remove letter of x

insertion:
insert letter of y into x

\ exchange:

replace letter of x by leiter of 'y

no change




String Matching with Errors & Don't-cares

= Given a pattern x and text, find the shift for which the
edit distance between x and textis minimum

character mismarch—.

\
(2] e[ [ 2[2] 2] o «] o] - ISR SRS = [ [ <[ o] -] <]

R — (el =[e[ <l e[ul<]+]

best pattern match:
one character mismarci
edit distance = |

= String matching with don't-care symbols is equivalent to
string matching where those symbols can be any charac.

et TS TS _To[-T=[Jol:[-[-[ol:[<
x [e[a[t[c]o]=[0]5]
Introduction

= Earlier developments in pattern recognition research
are based on discriminant (statistical) approach

= Later, it is realized that in some applications
structuralinformation that describes patterns are
more important
= Note the slight difference between
= Syntactic pattern recognition :
recursive description using methods of formal languages
= Structural pattern recognition :
derivation of descriptions using mathematical tools
= SyntPR assumes pattern structure is quantifiable :
= Formal Grammars - parsing
= Relational descriptors - relational graph matching




Typical SyntPR System

= Typical SyntPR consists of 3 major parts :
= Preprocessing :
= filtering, restoration, enhancement
= Pattern description :
= pattern segmentation, primitive (feature) extraction
= Syntax analysis

= Decision whether the representation is syntactically correct
against primitives of reference patterns

INPUT | preprocessing Pattern | | Symax | o\ ssification &
Pattern Representation Analysis Description
RECOGIUTION ..o S ——

Learning
M Grammatical
Patterns Inference

Elements of Formal Grammars (1/3)

= Consider parsing of sentence " The students look hopeless"
<sentence>
<noun phrase> <verb phrase>
<article> <noun> <verb phrase>
The <noun> <verb phrase>
The students <verb phrase>
The students <verb> <adverb>
The students look <adverb>
. The students look hopeless
= These steps can be described by these set of rules :
<sentence> > <noun phrase> <verb phrase>
<noun phrase> - <article> <noun>
<verb phrase> > <verb> <adverb>
<article> > the <noun> > students <verb> - look <adverb> - hopeless
(Note that > sign means “can be written as")

® N o o » w N2




Elements of Formal Grammars (2/3)

Alphabet V : a finite, nonempty set of symbols
e.g. Va={a,b.c,..,z}

String S : either a single or a sequence of symbols from V
eg 'tohoe'="the' (oproduces simply sequence of symbols)

Null string € : an emtpy string with property x oe=€o0x=x

Set of strings of lengthk:VoV=V2, VoVoV=V3, .

Set of all nonempty strings : V*=V U V2 U V3 U.. (U : union)

Set of all strings : V" ={e} U V* (closure set of V)

Language L : Any subset of V" generated by a grammar G

Elements of Formal Grammars (3/3)

Grammar G : a four-tuple consisting of G={Vy,V\,P,S}
. V1 a set of Terminal symbols
e.g. Vr={thestudents,look hopeless}
. Vin ' a set of Nonterminal symbols
e.g. Vy={<sentence>, <noun phrase>, <verb phrase>, <article>,
<noun> <verb> <adverb>}
. P : Production rules a>b where a at least once element of Vj
e.g. <sentence>-><noun phrase> <verb phrase> ,
. S : Starting (root) symbol, an element of Vy
e.g. <sentence>

Note that : 1) V. NV, ={}

2) P:A- B ADV,UV,) -V, BONV, UV,)

=A grammar can be used in either generative (creates strings of terminal
symbols) or analytic mode (given a string and G, find structure of string)

A language generated by grammar &, denoted by L(G), is the set of all strings
that satisfy (1) each string consists only terminal symbols from V1 and (2) each
string was produced from S using P of G

10



Types of Grammars (1/2)

According to forms of productions, there are 4 types
of grammars :

Type 0 : Ty (Free or Unrestricted)

= No restrictions on the rewrite rules. Too general to be useful;
hence in general the problem of deciding whether a particular
sentence is generated by this type is usually undecidable

Type 1: T; (Context sensitive)
= aAb>abb A, OV, b0 (VyUVL) ™€ , ab O (V\UVY)™
"b; replaces A; in the context of a and b"
e.g. P={5>5C, CB->Cb, aB~>aa, bB->bb}

Types of Grammars (2/2)

Type 2 : T, (Context Free [CFG])
= A>S>b A OVyandb O (V UV -¢

"b replaces A independent of the context of in which
A appears”

e.g. P={S>aAa, A>a, A>b}

Type 3 : T; (Finite-state [FSG] or Regular )
= A->aBor A-b ABOVyandab OV

"at most 1 non-terminal symbol allowed on each side
of production ”

e.g. P={S 2aA, S>bA, A>a, A>b}

1



Comparisons between Grammars

Given a language, there may be more that one grammars to give
the same language; i.e. L=L(61)=L(G2).

Two grammars, 61 and G2, are said to be eguivalent iff
L(61)=L(62)

Among 4 types of grammars :
. L(T3) O L(T2) OL(T) OL(TO)  [O: subset operator]
= Inprogressing from a TO to T3, production restrictions increase
= Inprogressing froma T3 to TO, representational power increases
= Inprogressing from a T3 to TO, recognition difficulty increases

Examples for Grammars (1/6)

CONTEXT-FREE GRAMMAR (CFG) :
6={V+,V\.P,S} where V\ ={S,A B}, V:={a,b}, P as

(1) S>aB (2) S>bA (3) A>aS (4) A>bAA
(5) A=>a (6) B>bs (7) B>aBB (8) B>b
; svatione i . @ (8)
Typical derivations include : S= aB - ab
@ (6) (2) (5)
S= aB = abS = abbA = abba
. (2) (5)
An alternative method for S = bA = ba
describing any derivation is to @) (4) 5) o)
use derivation trees: S = bA = bbAZ = bbaf = bbac
S
a/ \B (?\‘re\nce)
b/ \S (noun phrase) (verb phrase)
b/ \A (ar‘ﬁce/) &un)(vﬁ:)&iverb)

J] the students look hopeless

12



Examples for Grammars (2/6)

CONTEXT-FREE GRAMMAR : A grammar for pronouncing numbers

6 ={V1,V\.P.S} where S={digit6},

Vn={digit6 digit3,digit2 digitl,teens,tys},
V;={one,two,..,teneleven,..,twenty thirty,.. ninety hundred,thousand},
P:

digit6-> digit3 thousand digit3

digit3-> digitl hundred digit2

digit2-> teens OR tys digitl OR digitl
teens > ten OR eleven OR ... OR nineteen

digit6-> digit3 thousand OR digit3
digit3-> digitl hundred OR digit2
digit1-> one OR two OR ... OR nine
tys> twenty OR thirty OR ... OR ninety

digité

digit3 thousand digit3
Derivation tree for |:> digitl  hundred  digit2 digit2
639,014 i <\ i
six tys  digitl teens
thirty  nine fourteen

Examples for Grammars (3/6)

. FINITE-STATE GRAMMAR (FSG):
6={V+,V\.P,S} where V\ ={S,A B}, V:={a,b}, P as

(1) S>aB (2) S>bA (3) A>a (4) A>aA
(5) B>b
Typical derivations include :
[6) (5) ) ®)
S= aB = ab S= bA = ba
) 4) )

(2)
S = bA = baA = baaA = baaa

An alternative method for describing any derivation is to
use a graphical representation :

* Nodes =& V|, (a special terminal T is also used) aC
*Arc from X to Y labeled z & production of form X->zV¥
*Arc from X to T labeled z 9 production of form X->z

Lemma : Givena FSG, if there is a path from S to T via x;x,X... X,,then string x;x,x... X, is
an element of L(G)

13



Examples for Grammars (4/6)

n 2-D Line Drawing Description Grammar :
Gy~ { V3, VoYl PV, SeY} where
verl ={Top, Body, Cylinder}, VeV':={tb,u,0,5*!+}, Syl =Cylinder
Py & (1) Cylinder-> Top*Body (2) Top>1*b (3) Body~>lu+b+u
[ + represents head to tail concatenation ]
[ * represents head-head and tail-tail concatenation]
[ ! represents head to tail reversal ]

.

lo

H
o H

T > H Is2

H H sl i s1+ls2

u 5 H ~—"
st s2 L st Cylinder -> t*b*(lu+b+u)
T T . slx 1s2
T
Is2
H

Examples for Grammars (5/6)

. Character Description using PDL :
Use a subset of PDL for description of the characters below :

—

A=u+((u+o+lu)*o)+lu C=lo+u+u+o P=u+((u+ro+lu)*o) F=u+(oxu)+o




Examples for Grammars (6/6)

. Blocks World Description :

A grammar is presented to describe and classify situations involving
stacks of (always 4 but either 2+2 or 3+1) blocks on a table. The

difference between two situations is clearly the structure

H l
. 62 (2 blocks) : 62={V,V\P,S} where @‘m*@ ©
Vy={Desc, left_stack, right_stack}, S= {Desc} Graphical Representation
Vr={table, a_block,+,"} [+ means “also”; * means “on top of"]
P ={ Desc>left_stack+right_stack, Desc>right_stack+left_stack,
left_stack->a_block”™a_block”table , right_stack->a_block”a_block”table}

B *e"
= 63 (3blocks): 63=(Vy,Vy,P',S} where . ona Gy
P'={Desc~>left_stack+right_stack, @ raphical Representation

left_stack+right_stack->a_block™table+a_block™a_block”a_| block table
left_stack+right_stack->a_block™a_block”ablock”table+a_block"table

Remarks on Grammar Generation

= Many concerns might arise about the selection of
primitives and grammar generation

= Primitive selection : Different primitives lead to different
grammars

= Grammars : Some grammars, designed in ad-hoc manner, may
generate sentences which can also be produced by others

= Choice of grammar type is important as well as achieving
adequate descriptive power

= Due to first three reasons, grammar design is an iterative
process

15



