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EE 583 
PATTERN RECOGNITION

Non-metric Methods

Decision Trees 

Syntactic (Grammatical) Methods

Elements for Formal Grammars

Examples for Pattern Description

Decision Trees
� It is natural to classify/describe pattern through a 

sequence of “questions”
� Decision tree

consisting of  root node, branches, leaf nodes 

� Apple= ( green AND medium) OR  (red AND medium)
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Classification and Regression Trees (CART)

� How to create a decision tree from training data?

� A decision tree will progressively split training data 
into smaller subsets
� If subset is pure � terminate that tree portion (i.e. become a 

leaf node) 
� Otherwise, grow the tree with more nodes

� A general framework :  CART
� How many splits will be at each node?
� Which property should be tested at each node?
� When does a node become a leaf?
� How to prune a large tree?
� If a leaf node is impure, how to assign labels?
� How to handle missing data?

CART : Number of Splits

� Splitting the training data at each node
� Branching factor

� It is possible to express any problem using binary trees
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CART : Query Selection

� The property to be tested at any node is the 
fundamental problem

� If the query at each node is of the form xi ≤ xis , then

� With a sufficiently large tree, any decision boundary 
can be approximated arbitrarily well

CART : Node Impurity

� Fundamental principle for tree creation : simplicity
� A query is required at each node,  makes data reaching 

its immediate descendants to be as “pure” as possible
� A measure of impurity, i(N) of node N is necessary 

� Ideally, i(N)=0 ; i.e. all patterns at node N belongs to same class
� Let P(wj) be the ratio of patterns at node N belong to class wj.

� Based on these definitions, how 
to choose the threshold for a 
query at any node? 

impurityication Misclassif                       )(max1)(

class-cfor impurity  Gini                        ))(()(

class-2for impurity  Gini                            ))(()(

impurityEntropy          )(log)()(

21

2

j
j

ji
ji

j
jj

wPNi

wwPNi

wwPNi

wPwPNi

−=

=
=

−=

∑

∑

≠



4

CART : Node Impurity

� The drop in impurity at node N (NL and NR are descendants)

∆i(N) = i(N) – PL i(NL) – (1 –PR) i(NR)
� At each node N, among different query thresholds, 

maximize ∆i(N)  

� Note that maximization is locally (not globally) optimal

� For c-class problem, one approach is twoing:
� Let C={w1, …,wc}, C1={wi1, …wik} and C2=C-C1

� For every split, compute impurity drops for C2’C1

� Maximize wrt thresholds and selection of C2’C1.

CART : Criteria for Stop Splitting 

� The traditional approach is to use a validation set (%p of 
training data & not used during tree creation)
� If validation set error is minimized � continue to 

split
� If best drop in impurity is ≤ β at node N � stop split
� If “number of remaining training patterns at node N“ ≤ δ

� stop split
� Minimize a global criterion :   α (size of tree) + Σ i(N)

� Relation to Minimum Description Length (MDL)
� Check whether a split is “meaningful” by comparing to a 

random split.
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CART : Pruning

� When a split stops at node N, there could be loss of 
possible beneficial splits in the descendant nodes.

� Principal alternative to stop splitting in a decision tree : 
Pruning
� A tree is grown fully until all leaf nodes have 

minimum impurity
� Then, all pairs of neighboring leaf nodes are 

examined for elimination using impurity check
� No requirement for a validation set, but complex

CART : Assignment of Leaf Node Labels

� Assignment of class labels at leaf nodes is easy, if their 
impurities are zero.

� With a positive impurity at a leaf node, this node should 
be labeled by a class with the most points represented

� Problem of instability in 
CART classifiers : 
� Even a single training 

point can lead to a 
different decision 
boundary

� Example on the right     �
� Entropy impurity is used 

and there is only a single 
data difference between
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CART : Feature Selection

� Feature selection is critical, as expected.
� Principal Component Analysis of the feature vector 

could be preferable due to obtaining important axes.
� Linear combinations of features also improve results

� Weights of a general linear classifier is estimated

Recognition with Strings

� Suppose patterns are represented by ordered 
sequences or strings of discrete items (characters)

� Typically, these discrete items are non-numeric and 
there is no notion of distance between strings

� Important Problems
� String matching
� Edit distance
� String matching with errors
� String matching with don’t-care symbols
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String Matching

� Apart from naïve string matching, there are more 
sophisticated matching algorithms

� Boyer-Moore algorithm : Works in reverse order

� Instead of shifts by a 
single character, 
multiple character 
shifts are achieved

� Good suffix and bad 
character heuristics try 
to detect mismatches 
and proceed multiple 
characters

Edit Distance

� Given two strings x and y, compute the minimum number 
of basic operations, such as character insertions, 
deletions and exchanges, to transform x into y.

� Edit distance calculation : e.g. excused� exhausted
� excused� exhused� exhaused� exhausted
� 1 exchange � 1 insert    � 1 insert
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String Matching with Errors & Don’t-cares

� Given a pattern x and text, find the shift for which the 
edit distance between x and text is minimum

� String matching with don’t-care symbols is equivalent to 
string matching where those symbols can be any charac. 

Introduction
� Earlier developments in pattern recognition research 

are based on discriminant (statistical) approach
� Later, it is realized that in some applications 

structural information that describes patterns are 
more important 

� Note the slight difference between
� Syntactic pattern recognition :

recursive description using methods of formal languages

� Structural pattern recognition :
derivation of descriptions using mathematical tools

� SyntPR assumes pattern structure is quantifiable :
� Formal Grammars � parsing
� Relational descriptors � relational graph matching
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Typical SyntPR System
� Typical SyntPR consists of 3 major parts :

� Preprocessing : 
� filtering, restoration, enhancement

� Pattern description : 
� pattern segmentation, primitive (feature) extraction 

� Syntax analysis
� Decision whether the representation is syntactically correct 

against primitives of reference patterns

Preprocessing
Pattern 

Representation

Syntax

Analysis

Grammatical 
Inference

Sample 
Patterns

Input 

Pattern

Classification & 
Description

Recognition
Learning

Elements of Formal Grammars (1/3)

� Consider parsing of sentence  “The students look hopeless”
1. <sentence>
2. <noun phrase> <verb phrase>
3. <article> <noun> <verb phrase>
4. The <noun> <verb phrase>
5. The students <verb phrase>
6. The students <verb> <adverb>
7. The students look <adverb>
8. The students look hopeless

� These steps can be described by these set of rules :
<sentence> � <noun phrase> <verb phrase>
<noun phrase> � <article> <noun>
<verb phrase> � <verb> <adverb>
<article> � the  <noun> � students  <verb> � look  <adverb> � hopeless

(Note that � sign means “can be written as”)
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Elements of Formal Grammars (2/3)

� Alphabet V : a finite, nonempty set of symbols
e.g. Va={a,b,c,…,z}

� String S : either a single or a sequence of symbols from V
e.g    ‘t o h o e’=‘the’  ( o produces simply sequence of symbols)

� Null string ε : an emtpy string with property  x o ε = ε o x = x

� Set of strings of length k : V o V = V2 ,  V o V o V = V3 , …

� Set of all nonempty strings : V+ = V U V2 U V3 U…  (U : union)

� Set of all strings : V* = {ε} U V+ (closure set of V)

� Language L : Any subset of V* generated by a grammar G

Elements of Formal Grammars (3/3)
� Grammar G : a four-tuple consisting of G={VT,VN,P,S}

� VT : a set of Terminal symbols

e.g.   VT ={the,students,look,hopeless}

� VN : a set of Nonterminal symbols

e.g.   VN ={<sentence>, <noun phrase>, <verb phrase>, <article>, 
<noun>,<verb>,<adverb>}

� P : Production rules a�b where a at least once element of VN

e.g. <sentence>�<noun phrase> <verb phrase>  , …

� S : Starting (root) symbol, an element of VN

e.g. <sentence>

Note that : 
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�A grammar can be used in either generative (creates strings of terminal 
symbols) or analytic mode (given a string and G, find structure of string)

�A language generated by grammar G, denoted by L(G), is the set of all strings 
that satisfy (1) each string consists only terminal symbols from VT and (2) each 
string was produced from S using P of G
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Types of Grammars (1/2)

According to forms of productions, there are 4 types 
of grammars :

� Type 0 : T0 (Free or Unrestricted)
� No restrictions on the rewrite rules. Too general to be useful; 

hence in general the problem of deciding whether a particular 
sentence is generated by this type is usually undecidable

� Type 1 : T1 (Context sensitive)
� aAib�abib Ai ∈VN , bi ∈ (VNUVT) *-ε , a,b ∈ (VNUVT) *

“bi replaces Ai in the context of a and b”

e.g. P={S�SC, CB�Cb, aB�aa, bB�bb} 

Types of Grammars (2/2)

� Type 2 : T2 (Context Free [CFG])
� A�b A ∈ VN and b ∈ (VNUVT) *-ε 

“b replaces A independent of the context of in which 
A appears”
e.g. P={S�aAa, A�a, A�b}

� Type 3 : T3 (Finite-state [FSG] or Regular )
� A�aB or A�b A,B ∈ VN and a,b ∈ VT

“at most 1 non-terminal symbol allowed on each side 
of production ”
e.g. P={S �aA, S�bA, A�a, A�b}
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Comparisons between Grammars

� Given a language, there may be more that one grammars to give 
the same language; i.e. L=L(G1)=L(G2).

� Two grammars, G1 and G2, are said to be equivalent iff 
L(G1)=L(G2)

� Among 4 types of grammars :
� L(T3)  ⊂ L(T2) ⊂ L(T1) ⊂ L(T0)      [⊂ : subset operator]

� In progressing from a T0 to T3, production restrictions increase

� In progressing from a T3 to T0, representational power increases

� In progressing from a T3 to T0, recognition difficulty increases 

Examples for Grammars  (1/6)
� CONTEXT-FREE GRAMMAR (CFG) :

G={VT,VN,P,S} where VN ={S,A,B}, VT ={a,b}, P as
(1) S�aB (2) S�bA (3) A�aS (4) A�bAA
(5) A�a (6) B�bS (7) B�aBB (8) B�b

Typical derivations include :

bbaabbaAbbAAbAS

babAS

abbaabbAabSaBS

abaBS

)5()5()4()2(

)5()2(

)5()2()6()1(

)8()1(

⇒⇒⇒⇒

⇒⇒

⇒⇒⇒⇒

⇒⇒

An alternative method for 
describing any derivation is to 

use derivation trees :

a

S

b

B

S

b A

a

(sentence)

(noun phrase) (verb phrase)

(article) (noun) (verb) (adverb)

the students look hopeless
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Examples for Grammars  (2/6)
� CONTEXT-FREE GRAMMAR : A grammar for pronouncing numbers

G  ={VT,VN,P,S} where S={digit6}, 

VN={digit6,digit3,digit2,digit1,teens,tys}, 

VT ={one,two,…,ten,eleven,…,twenty,thirty,…,ninety,hundred,thousand}, 

P :

digit6� digit3 thousand digit3 digit6� digit3 thousand OR digit3  

digit3� digit1 hundred  digit2 digit3� digit1 hundred OR digit2

digit2� teens OR tys digit1 OR digit1 digit1� one OR two OR … OR nine

teens � ten OR eleven OR … OR nineteen tys� twenty OR thirty OR … OR ninety

digit6

digit3 digit3thousand

digit1 digit2hundred digit2

six tys digit1

thirty nine

teens

fourteen

Derivation tree for 
639,014

Examples for Grammars  (3/6)
� FINITE-STATE GRAMMAR (FSG) :

G={VT,VN,P,S} where VN ={S,A,B}, VT ={a,b}, P as
(1) S�aB (2) S�bA (3) A�a (4) A�aA

(5) B�b

Typical derivations include :

baaabaaAbaAbAS

babASabaBS
)3()4()4()2(

)3()2()5()1(

⇒⇒⇒⇒

⇒⇒⇒⇒

An alternative method for describing any derivation is to 
use a graphical representation : 

• Nodes � VN (a special terminal T is also used)

•Arc from X to Y labeled z � production of form X�zY

•Arc from X to T labeled z � production of form X�z

ba

b a
S

A B

T

a

Lemma : Given a FSG, if there is a path from S to T via x1x2x… xn,then string x1x2x… xn is 
an element of L(G)
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Examples for Grammars  (4/6)
� 2-D Line Drawing Description Grammar :

Gcyl={Vcyl
T,Vcyl

N,Pcyl,Scyl} where 

Vcyl
N ={Top, Body, Cylinder},  Vcyl

T ={t,b,u,o,s,*,!,+}, Scyl =Cylinder 

Pcyl : (1) Cylinder�Top*Body (2) Top�t*b (3) Body�!u+b+u
[ + represents head to tail concatenation ] 

[ * represents head-head and tail-tail concatenation]

[ ! represents head to tail reversal ]

T
o

H

s1

H

T

s2

H

T

u

H

T

b
HTt

HT

Cylinder ->  t*b*(!u+b+u)

t
HT b : t*b

TH : !o

s1

T

!s2

H

: s1+!s2

s1

T
!s2

H

: s1x !s2

Examples for Grammars  (5/6)
� Character Description using PDL :

Use a subset of PDL for description of the characters below :

A=u+((u+o+!u)*o)+!u C=!o+u+u+o P=u+((u+o+!u)*o) F=u+(oxu)+o
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� Blocks World Description :

A grammar is presented to describe and classify situations involving 
stacks of (always 4 but either 2+2 or 3+1) blocks on a table. The 
difference between two situations is clearly the structure

� G2 (2 blocks) :  G2={VT,VN,P,S} where 
VN ={Desc, left_stack, right_stack},          S = {Desc}

VT ={table, a_block,+,^}   [ + means “also”; ^ means “on top of”] 

P ={ Desc�left_stack+right_stack, Desc�right_stack+left_stack,

left_stack�a_block^a_block^table , right_stack�a_block^a_block^table}

� G3 (3 blocks) :  G3={VT,VN,P’,S} where
P’={Desc�left_stack+right_stack, 

left_stack+right_stack�a_block^table+a_block^a_block^a_block^table

left_stack+right_stack�a_block^a_block^ablock^table+a_block^table

Examples for Grammars  (6/6)

D
C
B

A
T

D
C

B
A

T
A B C D

T

on
onon

on

Graphical Representation

A B C D

T
on

onon

on

Graphical Representation

Remarks on Grammar Generation

� Many concerns might arise about the selection of 
primitives and grammar generation

� Primitive selection : Different primitives lead to different 
grammars

� Grammars : Some grammars, designed in ad-hoc manner, may 
generate sentences which can also be produced by others

� Choice of grammar type is important as well as achieving 
adequate descriptive power

� Due to first three reasons, grammar design is an iterative 
process 


