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EE 583
PATTERN RECOGNITION

Bayes Decision Theory
Supervised Learning
Linear Discriminant Functions

Definitions, Decision Surfaces

Two-category Linearly Separable : Perceptron Criterion
Non-separable case : MSE & Ho-Kashyap
Support Vector Machines

Unsupervised Learning
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Linear Discriminant Functions

= In previous parametric supervised
approaches, it is assumed that the form of
probability density is known

= Now, assume the form of the discriminant
function is known

s Assume this form is linear either in
components or functions of x

= Insuch cases, LDF are relatively easy to
compute and analytically attractive
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LDF and Decision Surfaces (1/2)

= Assume a two-class problem, then LDF :
Decidew, if g(X)>0
g(X) = W X+ W w, if g(X)<0

weight vector threshold weight

either classif g(X) =0

s 9g(X)=0is a decision surface
= g(X) is linear = surface is a hyperplane

= This hyperplane, H, divides the feature space
intfo two subspaces, R, & R,

= Vector wis normal to any vector on H
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LDF and Decision Surfaces (2/2)

Decide w, if g(Xx)>0
g(x) =W X+Ww, w, if g(%) <0

weight vector threshold weight either classif g()—{) =0

= Note that g(x) gives a measure of distance

from x to H @
X=X, +I— a(x,) =0

~ |
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LDF for Multi-class Problems

There are 3 ways to classify multi-category problems :

H;,
w, Hs H,s
Wy

ambiguous
region

Wi/not-Wi dichotomies Wi/Wj dichotomies Linear Machine

(c-1 2-class problems)  (c(c-1)/2 2-class problems) fDivides the

ture s int
Find a LDF that will  Find a LDF that will  while 900 being
separate i-th class from separate i-th class from j- the Iargésf DF in
rest of the classes th class

i-th class/region



METU EE 583 Lecture Notes by A.Aydin ALATAN © 2013

Two-category Linearly Separable Case (1/3)

= If a vector that classifies correctly all the samples
of two classes exits, than the samples are called
linearly separable.

= In order to simplify analysis, perform the conversion

1 W,
d
o) =w, + > wx lety=| " la=| |- g(x)=ay
i=1 : :
| X4 Wo

= Assume h-samples of y vector, some labeled w, and
some w,: then the unknown a vector has the following
constraints according to the correct classifications :

y islabelledw, =a'y. >0
y islabelledw, = a'y, <0ora'(-y,)>0
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Two-category Linearly Separable Case (2/3)

= In the "solution space”, each sample y is a constraint
to find a solution for vector a, such that y vector is
normal to the hyperplane aly=0

mat—? }./7 ¥” a
-y i 5 T
i
-y4 |/
o L
........... "y4
""‘y3

Since there is a (shaded) solution region, solution vector is not unique;
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Two-category Linearly Separable Case (3/3)

= Since solution vector is not unique, one option is to
choose this vector such that aly >b >0 for all i

as
4

solution
region

a;

<
[

as

{ - & l‘{f\
solution \A
Y

0] -
region -

a;

= Motivation for going to the ~middle’ portion is due to
natural belief for better classification of new samples
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Minimizing Perceptron Criterion (1/3)

= Lets define a criterion function for solving aly, >0
J,(a)= Z(—éty) Y (a) : setof misclassied samples
yLlY (a)
= Note that

= -a'y; is always positive for misclassified data and equal
to zero, if all samples are correctly classified

= Perceptron criterion is proportional to the sum
distances of misclassified samples to decision boundary

= Using one of the descent procedures, minimize J.(a)
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Minimizing Perceptron Criterion (2/3)

= Tn order to find a "solution vector" a, the criterion
J(a) should be minimized using an optimization method

= Steepest Descent is such an optimization technique:

J(@)
' J(&)
‘ A =3~ P 0I(&)
——
stepS|ze
ak+1:_ ak

= Step size choice is critical :
= if it is too small = slow convergence

= if is is too large > convergence overshoot, diverge
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Minimizing Perceptron Criterion (3/3)
J, (@)= Z(—éty) Y(a) : setof misclassiied samples

yay (&)

= Gradient of J,(a) is obtained as: 0J (&)= ) (-V)
= Using gradient descent, a value for the k*hyiD’:éar)'a’rion P a.,, =a t+p Z y

yYy
= If stepsize is constant > Fixed increment case
Geometrical Interpretation : Examgle e s
Angle between a, and y should be < /2 1 Il >
.'...,....‘.-" — a( ' > a:
o q‘t(y < O

" If the samples are linearly separable, convergence to a solution is
guaranteed by the Perceptron Method (read the proof at Duda&Hart)
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Non-separable Behavior

= Approaches based on separability assumption,
relentlessly search for an error-free solution
= Inpractice, if there is no a priori info about
separability,
= such procedures should be modified with an

appropriate termination rule so that divergence is
avoided

= one should seek for other approaches that do not
require separability condition
= MSE procedures
= Ho-Kashyap approach
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Minimum Squared Error Procedures (1/2)

= Rather than trying to make aly>0 for all i, lets
make a'yi=b; for an arbitrary constant bi>0,

Vi b,
Y=|y b=|b | = Find dsuchthat Ya=b
Vi b, |
= Since the relation above is usually overdetermined,

a solution can be obtained by minimizing the square
of the error, e=|Ya-bf,
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Minimum Squared Error Procedures (2/2)
= e=|Ya-bf is minimized by finding the pseudo inverse
fy: . .- -
° a=Y'b=(YY)Y'b
pseudginverse

= Note that such approaches do not try to find a
separating plane, but rather minimize the average
error

Y

= Selection of bis important = MSE method will be
equivalent to Fisher's LD with appropriate b
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Ho-Kashyap Procedures (1/2) :

= Perceptron procedure finds separating plane, if
samples are linearly separable,

= but do not converge for non-separable problems

= MSE procedure yields a weight vector in both
separable and non-separable cases,

= but there is no guarantee to have a separating
plane, even if the samples are linearly separable

= If margin vector, b, is chosen arbitrarily, all one can
guarantee is minimization of |Ya-bf,

= but for alinearly separable problem, all the
elements of b must be greater than zero; i.e. there
exists a’and b’such that Ya'=b’ >0
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Ho-Kashyap Procedures (2/2) :
= Minimize |Ya-bfvarying both a and b within the
criterion function, Jg J,(a,b) =|va-1b|’

= Inorder to use a modified version of gradient
descent procedure, find the gradients as

0.J.(ab) =2Y'(Ya-b) ,0,J.(a,b)=-2(Ya-b)

= For any value of b, a=Y'b, but for any value of a,
the same is not true, since we have constraint b>0

= Algorithm: b >0 butarbitrary
a, =Y'b
b, =b —p0,ds(a.b) =b + o \(Ya( _bk)

shouldaTways(+)

= For non-separable case, Ya-b,<0 for all elements of b
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|

N

%

Multi-category Generalizations (1/4)

All the methods, we have examined so
far are proposed for two-class problems

Linear Machine approach can be utilized
to generalize these algorithms to multi-
category

If a Linear Machine exits that classifies
all the samples correctly, these samples #:
are called linearly separable

Assume the samples are linearly Divides the
separable, then for c classes there exist [ e e

the largest DF in

a set of weight vectors, satisfying L clooey region

Linear Machine

.., suchthat for y. Y., atyk >§j‘yk forall i # j
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Multi-category Generalizations (2/4)

= Multi-category problems can be reduced to two-

class problems by

= Assume sample y belongs to class-1:

(&' -4)y>0 forj=2...c

I\@l D!

shouldclassify 7,, =

QD
I

C}Dl

=a'n, >0 forall j#1

G-
-y

’,710 =

correctly
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Multi-category Generalizations (3/4)

» Fixed Increment Rule for multi-category problems :
Lety, OY, and &(K)'V, <& (K)'V, i#]
g (k+1)=a(k)+y,
a;(k+1) =a, (k) -y,
a(k+h=a(k), Iziandl #j
y

a1<+1

ay>0 \=—

Angle between a, and y should be < /2

= For linearly separable problems, it can be shown
that fixed increment rule is guaranteed to converge
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Multi-category Generalizations (4/4)

= MSE for multi-category problems : min |Ya-bf

Find & suchthata’'y=1 forallydY, and &ay=0 forallyOY,

Let A, =[d---&],

cke

gl

mi n{(YA-B) (YA-B)}= A=Y'B

I@Jl

P

Y . =

nxd

|

Y. : sampledabelledw
B : allzerosexcepi "colum

1 -0
_1 ) O_
o
_O ) 1_

:



Generalized LDF (1/2)
= Linear Discriminant Function:

d
g(X) = w, + Z Wi X
=

= Quadratic Discriminan’r Func’rion :

g(X) =w, +wa +ZZW X; X

i=1 j=1
- Polynomial Discriminan’r Function :

g(x) =w, +wa +ZZW X, X, +7$d'$d‘w”kxx X, +

=1 j=1 i=1 j=1 k=1

= Generalized Linear Discriminant Function :

d
g()_{):Wo_l_Z a,¢ (X) e.g. d(X) = X2 | X:{Xl}
=1
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Generalized LDF (2/2)

= Assume a simple quadratic DF : g(X)=a,+a,x+ax?
= Tn order to make DF linear, let ®(X)=[ 1 x X ]T
= Note that a=[-1 1 2] = g(X)>0 for x<-1 & x>0.5
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Kernel Methods (1/2)

= Lets generalize the quadratic DF g(x)=a,+a,x+azx*> which
has the mapping ®(X)=[ 1 x ]

= Let ®d(x) be any nonlinear feature space mapping

= A kernel function is defined by the relation
K(X,X)=d(X)" ®(X")

= A typical kernel k(x,z) = (X"2)? = (%2, + X,2,)°
= X'z, + 2X,Z,X,Z, + X2 Z;
= (Xlz’ \/Exlxz’ Xzz)( 212’ \/Ezlzz’ 222)T
=®(X) ®(2)

= A kernel is called Aomogenous (e.g. radial basis

functions), if it only depends on distance between
features k(%,%") = k(||x = x'||
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Ker‘nel MZThOdS (2/2) ii[\'(}ri..l‘j]ch > ()

i=1 j=1

= The necessary & sufficient condition for a function to be
a valid kernel is positive semi-definiteness of matrix K

K=od ' where @ =[--- ®(x)---], for any x

= Kernel functions, k(x,X’), avoid explicit utilization of ®P(x)
vectors, as nonlinear feature space mappings with high-Ds

= Some well-known kernels
K(%,%') = (X7 +c)™
k(%, %) =e F*F2" - Gaussian kernel
k(X,X') =tanh( ax' X' + b) : Sigmoid kernel
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Support Vector Machine (SVM)

s SVM performs classification between two
classes by finding a decision surface that
is based on the most "informative” points
of the training set

= SVM differs from classical classifiers in
the way that it handles the risk concept
= Empirical risk : minimize error on training data

= Structural risk : minimize probability of
misclassifying future test data

» SVM tries to maximize the margin between
samples for different classes
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SVM : Decision Boundary

(a) (b)

Decision boundary obtained by (a) an ordinary classifier and (b) SVM
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SVM : Formulation (1/7)

= Assume the following is given

= a training data set {x,,...,x}, consisting of vectors
= their corresponding labels {y,,...,y}, taking values +1 or —1.

s LDF is defined g(X)=wX +w, i=1...,n

Decidey. =+1 if g(X)=+1
y=-1if g(x)s-1 = Y (WX +wp)>+1  i=1..,n
either classotherwise
® : g@;ﬂ

o plus PA"© e g0
® Bouﬂdar 2
|

=

=
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SVM : Formulation (2/7)

s Optimal Seperating
Hyperplane (OSH) separates
feature space, while
maximizing the distance from
the nearest point :

s Support Vectors (SV) are the
training patterns nearest to

OSH, defining OSH

s SVs are the most difficult
samples to classify

= SVs are the most informative
for classification
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SVM : Formulation (3/7)

= Distance of point x; from the decision boundary is
equal to

_ WX W, -”{LX «

HWH Son o(x0
(|

O

I

|

= Note that g(X) =0 = WX+w, =kW'X+kw, =W'X+w, =0
= Lets normalize (w,w,) so that distance for
hearest point becomes 1/jw|

W'k +w, 1 P

X

A R

O

|
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SVM : Formulation (4/7)

= For a linearly separable problem, OSH can be
obtained as a result of an optimization by
maximizing distance of samples closest to OSH

(or min|wF)

mMaX

|
subjectto v, (\T\/tx +V\/0)2 +1  i=1...,n

= This constrained optimization problem can be solved
by using the method of Lagrange multipliers

L(W,W,, ) :%th—iai (y, (% +w;)-1)
=1

a. :Lagrangemultiplier,a;, =20
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SVM : Formulation (5/7)
L(W,W,,a) :%th\/—gai (y, (% +w})-1)

= Solution satisfying (Kuhn-Tucker) conditions below
provides the minimum & the Lagrange multipliers

OL(W, W, a) _ o OL(W,w},a)
oW O ow,

oy, (W% +w,)-1)=0 i=1..n=a,=0or(y (#'% +w,)-1)=0

=0, a,=20

= Derivatives wrt w’ andw,’ yields

=W =) @& y.% where, nonzerdoronlySV's  » a;y, =0
= =1

= The solution is obtained thru convex programming in
(Wolfe) dual representation
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SVM : Formulation (6/7)

= If the problem is non-separable:

min{Hv*\/H2 +ngﬁ}, & =0 C:trade off parameter

subjectto vy (\T\/tx +V\/O)2 +1-¢ 1=1...,n

= (;is used to compensate for misclassified samples

= Cgives a compromise between distance of the
nearest point and data

= The non-separable problem can be similarly solved

L(W,w,,a,[,¢) :%\T\/DV\'HCZ{i —iﬁigﬁ —iai (yi (\T\/‘X +v\/0)—1+5i)
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SVM : Formulation (7/7)

mind [W|*+C> &+ &=20  C:trade off parameter

(c) (d)

Optimal separating hyperplane for C' = 4.0 (a), C = 4.8 (b), €' =6.7 (¢), and C' = 7.5
(d) respectively. ’ '
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SVM : Nonlinear Kernels (1/2)

= Linear separability assumption can especially be
useful after projecting feature vectors into higher
dimensional feature spaces by mapping functions, @

X o d(X) ®:0" - 0Om

= Define a LDF, f(X)=wWI[D(X)

wherew =) a,®(X ) anda;'snon- zerofor only SV's
=1

- W -
obtainedasasolution

» Define a kernel, k, in terms of the mappings, @

(X, %) = D(R) B(X) = (%) =Y ark(X, %)
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SVM : Nonlinear Kernels (2/2)

= Without having full information for ®, K can still be
utilized, as long as K is positive, symmetric and
continuous (Mercer's theorem).

= Kernel, 4, is usually chosen as one of the following

k(%,%) = (% X+1)" (polynomia type)
(% —R).(% %)
k(X,X)=e 20 (radial-basisstyle)

K(X,X) =tanhk X [X—0) (neuralnet type)



