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EE 583 
PATTERN RECOGNITION

Bayes Decision Theory

Supervised Learning

Linear Discriminant Functions

Definitions, Decision Surfaces

Two-category Linearly Separable : Perceptron Criterion

Non-separable case : MSE & Ho-Kashyap

Support Vector Machines

Unsupervised Learning
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Linear Discriminant Functions

� In previous parametric supervised 
approaches, it is assumed that the form of 
probability density is known 

� Now, assume the form of the discriminant 
function is known

� Assume this form is linear either in 
components  or functions of x

� In such cases, LDF are relatively easy to 
compute and analytically attractive 
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LDF and Decision Surfaces (1/2)

� Assume a two-class problem, then LDF  :
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� g(x)=0 is a decision surface 
� g(x) is linear � surface is a hyperplane

� This hyperplane, H, divides the feature space 
into two subspaces, R1 & R2

� Vector w is normal to any vector on H
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weight vector threshold weight 
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LDF and Decision Surfaces (2/2)

� Note that g(x) gives a measure of distance 
from x to H
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LDF for Multi-class Problems
There are 3 ways to classify multi-category problems :

1
2

3

Wi/not-Wi dichotomies

(c-1 2-class problems)

Find a LDF that will 
separate i-th class from 
rest of the classes

W1   not-W1

not-W2  W2

1
2

3

Wi/Wj dichotomies

(c(c-1)/2 2-class problems)

Find a LDF that will 
separate i-th class from j-
th class

W1   W2

W1    W3

W3    W2

1
2

3

Linear Machine

Divides the 
feature space into 
c while gi(x) being 
the largest DF in 
i-th class/region

g2(x) > g3(x) 
g3(x) > g2(x) 

g2(x) > g1(x) g1(x) > g2(x) 
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Two-category Linearly Separable Case (1/3)

� If a vector that classifies correctly all the samples 
of two classes exits, than the samples are called 
linearly separable.

� In order to simplify analysis, perform the conversion 
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� Assume n-samples of y vector, some labeled w1 and 
some w2 ; then the unknown a vector has the following 
constraints according to the correct classifications :
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Two-category Linearly Separable Case (2/3)

� In the “solution space”, each sample y is a constraint 
to find a solution for vector a, such that y vector is 
normal to the hyperplane aty=0

a1

a2

y1

y2

-y3

-y4

a

Since there is a (shaded) solution region, solution vector is not unique; 

y’

y’’

y1

y2

y3

y4

a
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Two-category Linearly Separable Case (3/3)

� Since solution vector is not unique, one option is to 
choose this vector such that atyi > b > 0 for all i

� Motivation for going to the `middle’ portion is due to 
natural belief for better classification of new samples
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Minimizing Perceptron Criterion (1/3)

� Lets define a criterion function for solving atyi >0

samplesiedmisclassifofsetaYyaaJ
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� Note that 

� -atyi is always positive for misclassified data and equal 
to zero, if all samples are correctly classified

� Perceptron criterion is proportional to the sum 
distances of misclassified samples to decision boundary

� Using one of the descent procedures, minimize Jp(a) 
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� In order to find a “solution vector” a, the criterion 
J(a)should be minimized using an optimization method

� Steepest Descent is such an optimization technique:

� Step size choice is critical : 

� if it is too small � slow convergence

� if is is too large � convergence overshoot, diverge

{
)(1 k

sizestep

kkk aJaa ∇−=+ ρ

akak+1

J(a)
J(ak)

Minimizing Perceptron Criterion (2/3)
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� Gradient of Jp(a) is obtained as : ∑
∈

−=∇
)(
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aYy
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� Using gradient descent, a value for the kth iteration : ∑
∈

+ +=
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� If stepsize is constant � fixed increment case

a’

a’’Geometrical Interpretation :

Angle between ak and y should be < π/2

0>yat
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Example :

� If the samples are linearly separable, convergence to a solution is 
guaranteed by the Perceptron Method (read the proof at Duda&Hart)
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Minimizing Perceptron Criterion (3/3)
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Non-separable Behavior
� Approaches based on separability assumption, 

relentlessly search for an error-free solution
� In practice, if there is no a priori info about 

separability,
� such procedures should be modified with an 

appropriate termination rule so that divergence is 
avoided

� one should seek for other approaches that do not 
require separability condition 

� MSE procedures
� Ho-Kashyap approach
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Minimum Squared Error Procedures (1/2)
� Rather than trying to make atyi>0 for all i, lets 

make atyi=bi for an arbitrary constant bi>0,
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� Since the relation above is usually overdetermined, 
a solution can be obtained by minimizing the square 
of the error, e=|Ya-b|2 ,  
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Minimum Squared Error Procedures (2/2)

� Note that such approaches do not try to find a 
separating plane, but rather minimize the average 
error

� e=|Ya-b|2 is minimized by finding the pseudo inverse
of Y :

bYYYbYa
inversepseudo

tt
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� Selection of b is important � MSE method will be 
equivalent to Fisher’s LD with appropriate b
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Ho-Kashyap Procedures (1/2) :

� Perceptron procedure finds separating plane, if 
samples are linearly separable, 

� but do not converge for non-separable problems

� MSE procedure yields a weight vector in both 
separable and non-separable cases, 

� but there is no guarantee to have a separating 
plane, even if the samples are linearly separable

� If margin vector, b, is chosen arbitrarily, all one can 
guarantee is minimization of |Ya-b|2, 

� but for a linearly separable problem, all the 
elements of b must be greater than zero; i.e. there 
exists a’ and b’ such that Ya’=b’ >0
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Ho-Kashyap Procedures (2/2) :
� Minimize |Ya-b|2 varying both a and b within the 

criterion function, Js
2
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� In order to use a modified version of gradient 
descent procedure, find the gradients as

43421
)(

1

*

1

)(),(

0

+

+ −+=∇−=
=

>

alwaysshould

kkkkkksbkkk

kk

bYabbaJbb

bYa

arbitrarybutb

ρρ

� Algorithm :

� For any value of b, a=Y*b, but for any value of a, 
the same is not true, since we have constraint b>0

� For non-separable case, Yak-bk<0 for all elements of b
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Multi-category Generalizations (1/4)

� All the methods, we have examined so 
far are proposed for two-class problems

� Linear Machine approach can be utilized 
to generalize these algorithms to multi-
category

� If a Linear Machine exits that classifies 
all the samples correctly, these samples 
are called  linearly separable

� Assume the samples are linearly 
separable, then for c classes there exist 
a set of weight vectors, satisfying
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Linear Machine

Divides the 
feature space into 
c while gi(x) being 
the largest DF in 
i-th class/region

g2(x) > 
g3(x) g3(x) > 
g2(x) 

g2(x) > 
g1(x) 

g1(x) > 
g2(x) 
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� Multi-category problems can be reduced to two-
class problems by 

� Assume sample y belongs to class-1 :
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� Fixed Increment Rule for multi-category problems :
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� For linearly separable problems, it can be shown 
that fixed increment rule is guaranteed to converge
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Angle between ak and y should be < π/2

Multi-category Generalizations (3/4)



METU EE 583 Lecture Notes by A.Aydin ALATAN © 2013

� MSE for multi-category problems : min |Ya-b|2
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Generalized LDF  (1/2)
� Linear Discriminant Function :

� Quadratic Discriminant Function :

� Polynomial Discriminant Function :

� Generalized Linear Discriminant Function :
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Generalized LDF  (2/2)

� Assume a simple quadratic DF : g(x)=a1+a2x+a3x2 

� In order to make DF linear, let Φ(x)=[ 1 x x2 ]T

� Note that a=[-1  1  2]T � g(x)>0 for x<-1 & x>0.5
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Kernel Methods (1/2)
� Lets generalize the quadratic DF g(x)=a1+a2x+a3x2  which 
has the mapping Φ(x)=[ 1 x x2 ]

� Let Φ(x) be any nonlinear feature space mapping

� A kernel function is defined by the relation
)()(),( xxxxk T ′ΦΦ≡′ rrrr

� A kernel is called homogenous (e.g. radial basis 
functions), if it only depends on distance between 
features )(),( xxkxxk ′−=′ rrrr

� A typical kernel
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� The necessary & sufficient condition for a function to be 
a valid kernel is positive semi-definiteness of matrix K

� Kernel functions, k(x,x’), avoid explicit utilization of Φ(x)
vectors, as nonlinear feature space mappings with high-Ds

� Some well-known kernels

kernel Sigmoid :)tanh(),(

kernelGaussian  :),(

)(),(
22 2/
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Kernel Methods (2/2)



METU EE 583 Lecture Notes by A.Aydin ALATAN © 2013

� SVM performs classification between two 
classes by finding a decision surface that 
is based on the most “informative” points 
of the training set

� SVM differs from classical classifiers in 
the way that it handles the risk concept
� Empirical risk : minimize error on training data
� Structural risk : minimize probability of 

misclassifying future test data

� SVM tries to maximize the margin between 
samples for different classes

Support Vector Machine (SVM)



METU EE 583 Lecture Notes by A.Aydin ALATAN © 2013

Decision boundary obtained by (a) an ordinary classifier and (b) SVM

SVM : Decision Boundary
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� Assume the following is given
� a training data set {x1,…,xn}, consisting of vectors

� their corresponding labels {y1,…,yn}, taking values +1 or –1.

� LDF is defined 

SVM : Formulation (1/7)
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� Optimal Seperating 
Hyperplane (OSH) separates 
feature space, while 
maximizing the distance from 
the nearest point :

� Support Vectors (SV) are the 
training patterns nearest to 
OSH, defining OSH

� SVs are the most difficult 
samples to classify

� SVs are the most informative 
for classification

SVM : Formulation (2/7)
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� Distance of point xi from the decision boundary is 
equal to
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� Note that 

� Lets normalize (w,w0) so that distance for 
nearest point becomes 1/|w’|

w

wxw
r k

t

r

rr
0+=

SVM : Formulation (3/7)
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� For a linearly separable problem, OSH can be 
obtained as a result of an optimization by
maximizing distance of samples closest to OSH
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� This constrained optimization problem can be solved 
by using the method of Lagrange multipliers 

SVM : Formulation (4/7)
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� Solution satisfying (Kuhn-Tucker) conditions below 
provides the minimum & the Lagrange multipliers
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SVM : Formulation (5/7)
( )( )∑

=

−′+′−′′=′′
n

i
i

t
ii

t wxwywwwwL
1

00 1
2

1
),,(

rrrrr αα

0,0
),,(

,0
),,(

0

00 ≥=
′∂
′′∂=

′∂
′′∂

iw

wwL

w

wwL ααα r

r

r

( )( ) ( )( ) 01  0,...,101 00 =−′+′=⇒==−′+′ wxwyorniwxwy i
t

iii
t

ii

rrrr αα

� Derivatives wrt w’ and w0’ yields

� The solution is obtained thru convex programming in 
(Wolfe) dual representation
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� If the problem is non-separable:
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� ζi is used to compensate for misclassified samples 
� C gives a compromise between distance of the 

nearest point and data
� The non-separable problem can be similarly solved
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SVM : Formulation (6/7)
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parameter off- trade:0min
2

CCw i
i

i ≥






 +′ ∑ ξξr

SVM : Formulation (7/7)
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� Linear separability assumption can especially be 
useful after projecting feature vectors into higher 
dimensional feature spaces by mapping functions, Φ

SVM : Nonlinear Kernels (1/2)

� Define a kernel, k, in terms of the mappings, Φ
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SVM : Nonlinear Kernels (2/2)

� Kernel, k, is usually chosen as one of the following
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� Without having full information for Φ, K can still be 
utilized, as long as K is positive, symmetric and 
continuous (Mercer’s theorem).


