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EE 583
PATTERN RECOGNITION

Statistical Pattern Recognition
Bayes Decision Theory
Supervised Learning
Linear Discriminant Functions
Unsupervised Learning
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Supervised Learning

= Supervised Learning == Training
= Parametric approaches

= Maximum likelihood estimation
= Bayesian parameter estimation

= Non-parametric approaches
= Direct pdf (multi-D histogram) estimation
= Parzen window pdf estimation
= k,-nearest neighbor pdf estimation
= Nearest-neighbor rule
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Parametric Approaches

s "Curse of dimensionality" . We need lots of
training data to determine the completely
unknown statistics for multi-D problems

= Arule of thumb : ‘use at least 10 times as many
training samples per class as the number of
features (ie. D)”

= Hence, with some a priori information, it is
possible to estimate the parameters of the
known distribution by using less number of
samples
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Maximum Likelihood Estimation (1/4)

Assume ¢ sets of samples, drawn according to
P(X|e«;) which has a known parametric form.

e.g. pdf is known to be Gaussian; mean & variance values are unknown

Let © ; be unknown deterministic parameter set of pdf for class-j

pP(X|w;) = p(X| w; ,éj) : shows the dependence

Aim : Use the information provided by the observed
samples to estimate the unknown parameter

Note that all sets of samples have independent pdf's,
- there are ¢ separate problems
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Maximum Likelihood Estimation (2/4)

For an arbitrary class, let an observed sample set, X,
contain n samples, X={xi,...,%}.

Assume the samples are independently drawn from
their density, p(X | O)

The likelihood of the observed sample set, X:
p(X |9) = D P(X% |O)
=1
Find value of the parameter that maximizes p(X |©)

- In order to find the parameter that maximizes its
value, differentiate the conditional probability and
equate to zero
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Maximum Likelihood Estimation (3/4)

Find value of unknown parameter maximizes P(X |©)

= For different ©, the

NS observed samples gives
AN SR different p(X|©) values
wie Lt for p(x.|®) densities
ki A = The argument for the
0:4x10'7:‘ o i e mGleum Of SUCh
bgpexie) 2 0t S 6T products is ML estimate
20t
o 5 = log p(X|®) will not
-80 .' - } 4 - p \'—0 d'ffer‘ The Gr‘gumen'l' Of
-100} - ‘ ‘ ’ d

this maxima
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Maximum Likelihood Estimation (4/4)

Better o work with logarithm for analytical purposes.

() =log p(X |8) =Y. log p(x, |6)

Note: Taking logarithm does not effect finding the maxima

Differentiate 1(®) and equa’re w0
It to zero.

Del(é) = Z o l0g p(X |é) =0
k=1
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ML Estimate of Univariate Normal :

Assume mean 6, & variance 8,7 are unknown for a Gaussian pdf:

0g P(X, 10) = = 10g{( 276} = = (%, ~6)°

Differentiate wrt 8,and 6,: Oglog p(x, |©) =

1
9_ (Xk - 91)

2

_ 1 " (Xk _01)2

260, 26,

Maximum likelihood estimates of the parameters :

n 1 n 1
—(x,—-6)=0 = 6,=—)> X

kzﬂgz K 1 1 n &< Kk
n n 2 ~ n ~

_Zi'l_z()(k 291) =0 = 92:1 (Xk_el)z
k:lHZ k=1 92 nk:1

ML
estimates
of mean
and
variance
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ML Estimate of Multivariate Normal :

Assume only mean vector is unknown :

N 1 i
log p(X, | &) = —Elog{( 2m)° | Z |} —E(xk - ) (X, — 1)

Differentiate
U, log p(X | &) = (X — )

Maximum likelihood estimate of the unknown mean vector :

Zz_l(xk H)=0 = fl:nzxk
k=1

MLE of mean is the arithmetic average of vector samples
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Bayesian Parameter Estimation (1/3)

Can we incorporate a priori knowledge about the unknown
parameters intfo the formulation?

Remember, Bayesian minimum error rate classifier maximizes p(«|x)

Assume the role of the observed sample seft, X, is emphasized :
P(X|a;, X)P(a; | X)

C

2 p(X|w;, X)P(w;|X)

=1

P(w, | X, X) =

Assume a priori probabilities are known: P(«; | X) = P(«;)

Assume sample sets of classes are independent,
> c separate problems ~ P(X |w;, X) = p(X|w;, X;)
= p(X[X)
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Bayesian Parameter Estimation (2/3)
p(X|X)P(«)

P(w|%, X) =

C

> p(Xlw, X)P(@))

Main aim is to compute p(X]| X)
p(X|X) = [ p(X,©|X)dO = [ p(X|©) p(®|X)do

form is known ?

Samples are drawn independently according to P(X | ©)
whose parametric form is known

Bayesian approach assumes that the unknown
parameter is a random variable with a known density p(© )
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Bayesian Parameter Estimation (3/3)

If p(®|X)is peaklysharpedat somevalue®, we obtain
p(X| X)= [ p(%|©)p(®| X)dO = p(X|©)

n(©) p(@] X)

If we are not sure about the value (i.e. ho sharp peak),
the result is the average over possible values of O

0

How to determine p(©|X) ?

For various densities, different analytical results exist
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Bayesian Parameter Estimation
Univariate Normal Distribution (1/3)

A univariate normal distribution with unknown u
p(x| 1) ~ N(u,07)

A priori information about yis expressed by density
2
p(lu) - N(:Uo’ao )

Observing the sample set, D, p(1|D) becomes

p(u1D) = P(D | 1) p4) :alj p(X, | 1) P(L)

P(D | ) p(u)du

1

n _E(Xk—,u)z 1 _%(,u_/uO)Z
D)=|a ez ¢ e =
Pu1D) ( I:l\/ZﬂJ ]\/27700
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Bayesian Parameter Estimation
Univariate Normal Distribution (2/3)

1[2(“‘” >2+(”‘”°)2} —g[(;ﬁz)uz—Z(;wa’“’%)uJ
k — a," e 0 k=1

p(u|D)=a'e @ 7 7 7
2 2 2 2
no g g°o;
= D)~ N(u. ,0?), = ° —m + O) =
p(iul ) (lun n) lun na_g+0_2 n na§+02 IuO n n0§+0_2

PlR|X L X5.00x,)

M

As N>, p(uD) = d(L) => Bayesian Learning
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Bayesian Parameter Estimation

Univariate Normal Distribution (3/3)
After determining p(4D), p(x|D) is obtained by

p(x| D) = | p(x| ) p(x| D)

X—[d\ 2 1(,U Fhy2
D)= j e ral L 7@ du
= P \/ 2710 \ 2710

1 (X_:Un)
1

= p(X|D)=_ e 27 f(g,0,)

n

= p(x| D) ~N(y,,0° +0;)

Compared to the initial knowledge, p(x|4), about 4, p(x|D) has
additional uncertainty due to lack of exact knowledge of L.
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General Bayesian Learning

In summary :

* The form of the density, p(x|©), is assumed to be
known, but the value of parameter, ©, is unknown

» Our initial knowledge about the parameter, O, is
assumed to be contained in a known a priori density,

p(©).

* The rest of our knowledge about the parameter,
O, is contained in nsamples, drawn according to the
unknown probability p(x| ©)
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Comparison : ML vs. Bayesian

= ML avoids many assumptions and
analytically easier to solve, although some
estimates can be biased

= Bayesian parameter estimation permits
including a priori information about the
unknown, but the analytical derivations are
cumbersome.

= For ordinary cases, both approaches give
similar results with sufficient sample data
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Non-Parametric Approaches

» Parametric approaches require
= Knowing the form of the density
= Finding the parameter of the density

= In many cases,
= The form is not known

= The form does not let you to find a unique
solution (multi-modal densities)
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Non-Parametric Approaches

= The solution is to use non-parametric
approaches which do not assume a
form

s There are 2 main directions :

= Estimating densities non-parametrically
= Direct estimation of density

=« Parzen window
= k-NN estimation

= Nearest Neighbor Rules



METU EE 583 Lecture Notes by A.Aydin ALATAN © 2014

Non-Parametric Approaches
Density Estimation (1/3)

Probability P of a vector x falling into region R:

P= [ p(x)dx
[

N samples of x independently drawn according to p(x)

Probability of k independent samples fall into R (Binomial):
n
P = (kjpka— P)"* and E[k]=nP, vark)=nP(1-P)

Since Binomial distribution peaks very sharply around the
expected value, the number of observed samples (kobg) in R should
be approximately equal K= E[K]=nP

Note that probability P can be estimated via P=Kk_ . /n, but we
heed density, p(x)
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Non-Parametric Approaches
Density Estimation (2/3)

Assume p(x) is almost constant in R: j pP(X)dX = p(X)V
where V is the volume of R

Hence, one will obtain the obvious result by p(X) = Kops/ N
combining previous relations : V

There are two approximations (=) in previous relations
» If k(orn) goes to infinity  or V goes to zero

then those approximations will converge to exact values

For finite n, fixing V and k independent of nyields problems :
e IfV->0 then p(x)=0(useless)
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Non-Parametric Approaches
Density Estimation (3/3)

Form a sequence of regions, R, ,centered at x for n samples
k. /n
V

n

3 conditions under which lim [p,(X)dX' =p(x)  p,(X)=

@) lim V. =0 (2) Im k =w (3) lm <2=0

n- o n- oo n-o© N

Examples that achieve these conditions :

e : C V
* Parzen : Initial Vovolume is shrinking V, =—=

Jn
- k-NN : R, is grown until it contains k, samples k, =+/n

I n=4 n=9 n=16 n= 100
\ L L Ter [* . f’-’.:,‘
A I PR I PR e’ e 30 ¥
V,=1/\n \‘_\ ] PR NDRCH I (B U
3 - L4 * *

. Fy
Lot e

—

!
(
N
- — — . . 1.
( \\I |/ ‘\\] . r/ﬁ\} ~<_\] ... «'»lf':‘;”{ .
; ! . . ; ¢ v t’.. s :.
\\\L J/I \\ / -\\‘_J_,/ PN . :;? .‘-

~—— AN
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Non-Parametric Approaches
Parzen Windows (1/2)

=Assume region Rn is a d-dimensional hypercube with
the length of an edge as hn

*The number of samples falling in Ri can be
obtained analytically by using the window function :
1 |u <12 j=1...d

0  otherwise

d(U) =4

*For a hypercube (centered at x), number of samples
and estimate for the density are obtained as :
_ X=X 11 X=X
K, ZCD( ) and p,(x)==) — (=)
n='V h

n n
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Non-Parametric Approaches
Parzen Windows (2/ 2)

The window function can be generalized for better &
interpolation of the density : each sample contribute 5
to the estimate based on its distance to x.

S<'

 If hnis very large, then pr(X) is a superposition of slowly
changing functions & an "out-of-focus” estimate

« If hnis very small, then window function is a Dirac delta
function and estimate is sum of sharp pulses

R

> X

x1 X2 x3 x4 xb x6 X7

With unlimited number of samples, pi(X) converges to the unknown
density for any value of hn

With limited number of samples, the best option is to seek for an
acceptable compromise



Non-Parametric Approaches
Example : Parzen Windows (1/2)

Window function : o(u)= %e h, :%
T n

/ \ A f\|
/N N\ W\A
ﬂ\ /R
-/ I\

Normal density

A
/N
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Non-Parametric Approaches
Example : Parzen Windows (2/2)

Window function: ou=—+e2" p=1o

\ 27T "N
h=1 h,=0.5 h,=0.2
1 1 !
- /_\ /\ }\
0 / 2 3 4 0 1 2 3 4 7] ) 2 3 4
/ / !
0 I 2 3 4 0 1 2 3 4 0 I 2 3 4
1 | !
0 / 2 3 4 0 ! 2 3 4 0 I 2 3 4
1 / !
0 ! 2 3 4 0 ! 2 3 4 0 / 2 3 4

Bi-modal density
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Non-Parametric Approaches
ka-Nearest Neighbor

Parzen window approach depends on the initial
selection of the cell volume, V

One remedy is to choose the cell volume as a
function of the data, rather than an arbitrary
function of number of samples

In order to estimate p(x) from n samples, center a
cell around x and grow until it captures kn nearest w
samples (kn is a function of n). Resulting p(x) : p (x) =— N

Vv

n

Necessary conditions for convergence :
limk,=c and jim Ko = 0 (eg.k =+/n)

Nn—- oo Nn—- oo n
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Non-Parametric Approaches
Example : k--Nearest Neighbor

n:l
k=1
0 ! 2 3 4 0 ! 2 3 4
) !
n=16
k=4
0 1 2 3 4 i i1 2 3 4
/ 1 u
n=256
o M\
0 ! 2 3 4 1] /! 2 3 4
i )
n= oo
k,= oo /\
0 i 2 3 4 0 / 2 3 4
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Non-Parametric Approaches
Parzen vs k-Nearest Neighbor

n=1, n=4 n=9Y n=16 n=100

\ . a4 v + . .'“ . * .::%..:0..;:.
V”=//\j; [ | Q . @ » . {:—) * ese ‘:,:?g:.:. “ee
U ' ' ) N

= — s T

— * . .y .o. * see ... * .; ...; cee
e OO - B
\'\\___ __/ ' * :‘"‘08-_.(.‘0 :..

Both methods do converge, but it is very difficult
to make meaningful statements about their finite-
sample behaviour
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Non-Parametric Approaches

Classification Rule

All 3 methods (direct, Parzen, kn-NN) can be used to
obtain a posteriori probabilities for n-sample data

At each cell, total k samples; ki samples for each class
ki/n P (w |x) = —PalX@) _ K

> pa(xw) X
j=1

P, (X @) =

n

Cell size selection can be achieved by using either
Parzen window or kn-NN approach

Using arbitrarily large number of samples, unknown
probabilities can be obtained with optimum performance
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Non-Parametric Approaches
Nearest Neighbor Rule (1/3)

All 3 methods (direct, Parzen, kn-NN) can be used to
obtain a posteriori probabilities by using n-sample data
so that this density is utilized for Bayes Decision Rule

A radical approach is to use the nearest neighbor out
of the sample data to classify the unknown test data
(Nearest Neighbor Rule [NN-R])

While Bayes Rule (minimum-error rate) is optimal
while choosing between different classes, NN-R is
suboptimal
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Non-Parametric Approaches
Nearest Neighbor Rule (2/3)

Assume that there are unlimited number of labeled
“prototypes” for each class

If the test point x is nearest to one of these
prototypes, X’ = p(w]x) =p(w|x’) forall /

Obviously, X labeled with m gives p(w,, [x’) > p(w]|x’) for
all j #m

= one should expect p(w,, |X) > p(w|x) for all j #m

For unlimited samples, the error rate for NN-R is less
than twice the error rate of Bayes decision rule
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Non-Parametric Approaches
Nearest Neighbor Rule (3/3)

NN-rule allows to partition the feature space into cells
consisting of all points closer to a given training point
than any other training point (Voronoi tessellation)
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Non-Parametric Approaches
k-Nearest Neighbor Rule

A straight forward extension to Nearest Neighbor rule
is using k-neighbors instead of only one.

The classification is achieved by voting k neighbors
(k is usually selected as odd to avoid ties)

Selecting k requires a compromise :

N a-. o« ™

* If kis too high > some of these k neighbors may |~ ... @ . .
have different probabilities, for finite n R

- If kis too low > estimation may not be reliable

k=5
The optimal behavior is obtained as both k and n
approaches to infinity.
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Dimension Reduction

In supervised learning, excessive dimensionality of
features should be decreased. The main approaches are

 Principal Component Analysis

» Unsupervised

e Fisher's Linear Discriminant

« Supervised (data with class info is required)
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Principal Component Analysis

Assume there n vectors in d-dimensions: { Xiveen s 7<n}

These vectors are represented by their projections
onto a line passing, e, through their sample mean, m

X =m+aeé

For a fixed line, the optimal a coefficients that
minimize the distance between points and the line :

n
min J(a,,... ,a,,€) = min kZzll I(m + a, &) - %, |
n n n
= J() =2 aZe] -2 a& (X -m)+ Y [ - m|’
k=1 k=1 k=1

dJ (.)
da,

=0 = a,=¢€
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Principal Component Analysis

Assume a coefficients are obtained; the same cost
function, J(.), is minimized wrt To the line dlrechon e

min J(a,...,
where a, = € (xk = m)

k=1

Define scatter matrix, S, (similar to covariance) as
n

k=1
n n n
= 3() = aZ|e - 23 a8 (% -m)+ Y ||x, - m|’
k=1 T k=1 :\;t( k=1
n ) n 2
=3 (B -m)f + 3 %, -
k=1 k=1

=-8'se+> [|x -m|” = min J() = max &'Sé
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Principal Component Analysis
mién J() = max é'Sé
Maximum of €Semust be obtained by the constraint |e|=1
Lagrangemul.:u=e'Se+ A(1-€'é) = % =0=2S€é-24€é=0

Solution is equal o € which is the eigenvector of S, corresponding
its largest eigenvalue

Result can be generalized to d’-dimensional projection
by minimizing the following relation

.
[m + > akieij— X,
i=1

"
where X = m + Z a, €, such that e's are eigenvectors
i=1

2

k=1



METU EE 583 Lecture Notes by A.Aydin ALATAN © 2014

Principal Component Analysis

Remember nvectors in d-dimensions: X = [%,,..., %]
Note difficulty during calculation of S,if d>>n (Sis dxd)
S=> (X —-m)(X —-m) = XX
k=1
= instead of solving Sesle or XXe=Je, try solving

multiply by X from left

XX f=AfF N XXX f=AXf
Note that XX /s dxd whereas XX /s nxn

XXX f)=A(X f) « X X'8=)6

— X f =8
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Fisher's Linear Discriminant (1/8)

= The Fisher's approach aims to project d-dimensional
data onto a line (1-D), which is defined by w

= The projected data is expected to be well separated
between two classes after such a dimension
reduction

L
Y
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Fisher's Linear Discriminant (2/8)
= Feature vector projections : Y, :\TVtX 1=1...,n

= Measures for separation based on w':
= Difference between projection means
= Variance of within-class projection data

= Choose projection (w) in order fo maximize J
3y =M M)
S *S,
wherem : projection meansfor classi
s’ => (y-m)* :scatter

yoy,
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Fisher's Linear Discriminant (3/8)

= Relation between sample & projection means :

m——Zx = m——Zy——ZWx W

N @, N yov N 1
s Define scatter matrices S
§ = (x-m)x-Mm) and §,=S+S
XU,

= Note that s and S are related as
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Fisher's Linear Discriminant (4/8)
= Similarly, the relation between m, and m, becomes
(M —my)* = (W'm - W' m,)* =W (M, —m,)(m —m,)" W
— V_VT SBV_V (Note that S; has rank 1)

= The initial criterion function :

o) — (ml_m2)2
BT
W' S, W

- This function can be writtenas J(W) = ———
ARSTAYY

= W vector maximizes Jmust satisfy Sgw=A§,w

(see distributed notes for its proof)

« If S, is non-singular, then

Sy SeW =AW = W=S, (M - M)
Qireqion
my —m,
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Fisher's Linear Discriminant (5/8)

= For a 2-class problem, d-dimensional data is projected on a line

= As an extension to c-class problem, it is possible to project
data onto (c-1)-dimensions, instead of a line.

= For (c-1)-dimensions :

Y, =W X,i=1..c-1 = y=W'xX

= Define new scatter matrices in d-dimensional space

5= S-mx-m 5=

XCWhole

[
]
N
£

I
=1

+
=

I
=
£

I
=

+
=1

I
=)

(Note that S; has rank c-1)
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Fisher's Linear Discriminant (6/8)

= Remember the samples are projected by y=W"X
= Resulting projected mean vectors in (c-1)-dimensions :

> _ 1o = oy
m=—2Yy , M= nm
N o Nz
= _ 1 T T = _13 T = T
= M==>W'x=W'm , m==>nW'm=wW'm
N o

= Scatter matrices in (c-1)-dimensions can defined as

=X b-m)y-m). & =20l - -

1=1 yLI,
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Fisher's Linear Discriminant (7/8)

= Scatter matrices in the projected space are
=X X l-my-m). &=3nm-mlm -
i=1 yo. i=1

= Relation between scatter matrices are equal to

S =YY y-mly-m/)

=1 yo,

ZZ(\NTX WM JWTR-WTR ) =WTS, W,
=1 X[1]

—_ C

=Sl - -]

C

> n (W -WTmW T W) =WTS,W
i=1
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Fisher's Linear Discriminant (8/8)
= Relation between scatter matrices are obtained as
SWEWSW, S =WTSW
= For better discrimination in the projected space:
min|S, |& max|S, | .| determinan

NEY _|WTSW|
J(e) = 1= J —
= 05 T wsw

Note that determinant is product of scatter along principal directions

= Solution for J(W) : Columns of the optimal Ware
generalized (c-1) eigenvectors that correspond to the
largest eigenvalues of S;W =A S, W



