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EE 583 
PATTERN RECOGNITION

Statistical Pattern Recognition

Bayes Decision Theory

Supervised Learning

Linear Discriminant Functions

Unsupervised Learning
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Supervised Learning

� Supervised Learning == Training
� Parametric approaches

� Maximum likelihood estimation
� Bayesian parameter estimation

� Non-parametric approaches
� Direct pdf  (multi-D histogram) estimation
� Parzen window pdf estimation
� kn-nearest neighbor pdf estimation
� Nearest-neighbor rule



METU EE 583 Lecture Notes by A.Aydin ALATAN © 2014

Parametric Approaches
� “Curse of dimensionality” : We need lots of 

training data to determine the completely 
unknown statistics for multi-D problems
� A rule of thumb : “use at least 10 times as many 

training samples per class as the number of 
features (i.e. D)”

� Hence, with some a priori information, it is 
possible to estimate the parameters of the 
known distribution by using less number of 
samples 
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Maximum Likelihood Estimation (1/4)
Assume c sets of samples, drawn according to

)|( jxp ω which has a known parametric form.

e.g. pdf is known to be Gaussian; mean & variance values are unknown

jΘ
r

Let        be unknown deterministic parameter set of pdf for class-j

Aim : Use the information provided by the observed
samples to estimate the unknown parameter

),|()|( jjj xpxp Θ=
r

ωω : shows the dependence 

Note that all sets of samples have independent pdf’s, 

� there are c separate problems
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Maximum Likelihood Estimation (2/4)

∏
=

Θ=Θ
n

k
kxpXp

1

)|()|(
rr

For an arbitrary class, let an observed sample set, X, 
contain n samples, X={ x1,…,xn} .

Find value of the parameter that maximizes )|( Θ
r

Xp

� In order to find the parameter that maximizes its 
value, differentiate the conditional probability and 
equate to zero

Assume the samples are independently drawn from 
their density, )|( Θ

r

xp

The likelihood of the observed sample set, X :
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Maximum Likelihood Estimation (3/4)
Find value of unknown parameter maximizes )|( Θ

r

Xp

� For different Θ, the 
observed samples gives 
different p(X|Θ) values 
for p(xk|Θ) densities

� The argument for the 
maximum of such 
products is ML estimate

� log p(X|Θ) will not 
differ the argument of 
this maxima

p(X|Θ)

log p(X|Θ)

p(x|Θ1) p(x|Θ2)
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Maximum Likelihood Estimation (4/4)

∑
=

Θ=Θ=Θ
n

k
kxpXpl

1

)|(log)|(log)(
rrr

Better to work with logarithm for analytical purposes.

0)|(log)(
1

=Θ∇=Θ∇ ∑
=

ΘΘ

n

k
kxpl

rr

Differentiate l(Θ) and equate 
it to zero.

Note:  Taking logarithm does not effect finding the maxima
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ML Estimate of Univariate Normal :
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2 are unknown for a Gaussian pdf:
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Maximum likelihood estimates of the parameters :
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ML Estimate of Multivariate Normal :

)()(
2

1
|}|)2log{(

2

1
)|(log 1 µµπµ rrrrrr −Σ−−Σ−= −

k
t

k
d

k xxxp

Assume only mean vector is unknown :

)()|(log 1 µµµ
rrrr −Σ=∇ −

kk xxp

Differentiate 

Maximum likelihood estimate of the unknown mean vector :
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MLE of mean is the arithmetic average of vector samples
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Bayesian Parameter Estimation (1/3)

Assume the role of the observed sample set, X, is emphasized :

∑
=

= c

j
jj

ii
i

XPXxp

XPXxp
XxP

1

)|(),|(

)|(),|(
),|(

ωω

ωωω
r

r

r

Assume sample sets of classes are independent, 

� c separate problems

Assume a priori probabilities are known : )()|( ii PXP ωω =

)|(

),|(),|(

Xxp

XxpXxp iii
r

rr

=
= ωω

Can we incorporate a priori knowledge about the unknown 
parameters into the formulation?

Remember, Bayesian minimum error rate classifier maximizes p(ωi|x) 
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Bayesian Parameter Estimation (2/3)

Samples are drawn independently according to 
whose parametric form is known

)|( Θxp
r

Bayesian approach assumes that the unknown 
parameter is a random variable with a known density )(Θp

∑
=

=
c

j
jj PXxp

PXxp
XxP

1

)(),|(

)()|(
),|(

ωω

ωω
r

r

r

Main aim is to compute )|( Xxp
r

ΘΘΘ=ΘΘ= ∫ ∫ dXpxpdXxpXxp
knownisform

4342143421

rrr

?

)|()|()|,()|(
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Bayesian Parameter Estimation (3/3)

)ˆ|()|()|( )|(

 obtain we,ˆ  valuesome at sharped peakly is )|( If

Θ≈ΘΘΘ=

ΘΘ

∫ xpdXpxpXxp

Xp
rrr

If we are not sure about the value (i.e. no sharp peak), 
the result is the average over possible values of Θ

)(Θp )|( Xp Θ

Θ̂

How to determine p(Θ|X) ?

For various densities, different analytical results exist



METU EE 583 Lecture Notes by A.Aydin ALATAN © 2014

Bayesian Parameter Estimation
Univariate Normal Distribution (1/3)

A univariate normal distribution with unknown µ
),(~)|( 2σµµ Nxp

A priori information about µ is expressed by density
),(~)( 2

00 σµµ Np

Observing the sample set, D, p(µ|D) becomes

∏
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Bayesian Parameter Estimation
Univariate Normal Distribution (2/3)














+−+−













 −+−− ∑
′′=

∑
′= ==

µ
σ
µ

σ
µ

σσσ
µµ

σ
µ

ααµ
)

1
(2)

1
(

2

1
)()(

2

1

1
2
0

0
2

2
2
0

2
2

0

0

1

2

)|(

n

k
k

n

k

k x
nx

eeDp

{
22

0

2
0

2
2

022
0

2

1

22
0

2
02 ;,),(~)|(

σσ
σσ

σµ
σσ

σ
σσ

σµσµµ
+

=
+

+

∑
+

=⇒
nn

m
n

n
NDp n

x
n

nnnn

k

Increasing number of samples� p(µ|D) sharper peak 

As n�∞, p(µ|D) � δ(µ) � Bayesian Learning
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Bayesian Parameter Estimation
Univariate Normal Distribution (3/3)

∫= µµµ dDpxpDxp )|()|()|(

After determining p(µ|D), p(x|D) is obtained by
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Compared to the initial knowledge, p(x|µ), about µ, p(x|D) has 
additional uncertainty due to lack of exact knowledge of µ.
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General Bayesian Learning

• The form of the density, p(x|Θ), is assumed to be 
known, but the value of parameter, Θ, is unknown

• Our initial knowledge about the parameter, Θ,  is 
assumed to be contained in a known a priori density, 
p(Θ).

• The rest of our knowledge about the parameter, 
Θ, is contained in n samples, drawn according to the 
unknown probability p(x|Θ)

In summary :
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Comparison : ML vs. Bayesian

� ML avoids many assumptions and 
analytically easier to solve, although some 
estimates can be biased 

� Bayesian parameter estimation permits 
including a priori information about the 
unknown, but the analytical derivations are 
cumbersome.

� For ordinary cases, both approaches give 
similar results with sufficient sample data  
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Non-Parametric Approaches

� Parametric approaches require
� Knowing the form of the density

� Finding the parameter of the density

� In many cases,
� The form is not known

� The form does not let you to find a unique 
solution (multi-modal densities)
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Non-Parametric Approaches

� The solution is to use non-parametric 
approaches which do not assume a 
form

� There are 2 main directions :
� Estimating densities non-parametrically  

� Direct estimation of density
� Parzen window
� k-NN estimation

� Nearest Neighbor Rules
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Non-Parametric Approaches
Density Estimation (1/3) 

Probability P of a vector x falling into region R :

∫
ℜ

′′= xdxpP
rr

)(

N samples of x independently drawn according to p(x)

Probability of k independent samples fall into R (Binomial):

)1()var(,][)1( PnPknPkEandPP
k

n
P knk

k −==−







= −

Since Binomial distribution peaks very sharply around the 
expected value, the number of observed samples (kobs) in Rshould 
be approximately equal nPkEkobs =≈ ][

Note that probability P can be estimated via                  , but we 
need density, p(x)

nkP obs /≈
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Non-Parametric Approaches
Density Estimation (2/3) 

Assume p(x) is almost constant in R :  
where V is the volume of R

Vxpxdxp )()(
rrr ≈′′∫

ℜ

Hence,  one will obtain the obvious result by 
combining previous relations : V

nk
xp obs /
)( ≈r

There are two approximations (≈) in previous relations

• If k (or n) goes to infinity       or        V goes to zero

then those approximations will converge to exact values

For finite n, fixing V and k independent of n yields problems :

• If V � 0 then p(x) ≈ 0 (useless)
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Examples that achieve these conditions :

• Parzen : Initial Vo volume is shrinking 

• k-NN   : Rn is grown until it contains kn samples

Non-Parametric Approaches
Density Estimation (3/3) 

)()(lim xpxdxpn
n

rrr =′′∫
ℜ

∞→
3 conditions under which    

n

n
n V

nk
xp
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0=

nkn =

Form a sequence of regions, Rn ,centered at x for n samples     
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Non-Parametric Approaches
Parzen Windows (1/2)

�Assume region Rn is a d-dimensional hypercube with 
the length of an edge as hn



 =≤

=Φ
otherwise

dju
u j

0

,,12/1||1
)(

K
r

�The number of samples falling in Rn can be 
obtained analytically by using the window function :
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�For a hypercube (centered at x), number of samples 
and estimate for the density are obtained as : 

x

hn

x

hn+1
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Non-Parametric Approaches
Parzen Windows (2/2)

The window function can be generalized for better 
interpolation of the density : each sample contribute 
to the estimate based on its distance to x.

• If hn is very large, then pn(x) is a superposition of slowly 
changing functions & an “out-of-focus” estimate
• If hn is very small, then window function is a Dirac delta 
function and estimate is sum of sharp pulses

With unlimited number of samples, pn(x) converges to the unknown 
density for any value of hn

With limited number of samples, the best option is to seek for an 
acceptable compromise

x1 x2 x3 x4 x5 x6 x7
x

hn

x

hn
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Non-Parametric Approaches
Example : Parzen Windows (1/2)

Window function : 
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Non-Parametric Approaches
Example : Parzen Windows (2/2)

Window function : 
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Non-Parametric Approaches
kn-Nearest Neighbor

Parzen window approach depends on the initial 
selection of the cell volume, V

One remedy is to choose the cell volume as a 
function of the data, rather than an arbitrary 
function of number of samples

In order to estimate p(x) from n samples, center a 
cell around x and grow until it captures kn nearest
samples (kn is a function of n). Resulting p(x) :

n

n
n V

nk
xp

/
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)..(0limlim nkge
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k
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n

n
n

n
==∞=

∞→∞→

Necessary conditions for convergence :
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Non-Parametric Approaches
Example : kn-Nearest Neighbor
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Non-Parametric Approaches
Parzen vs kn-Nearest Neighbor

Both methods do converge, but it is very difficult 
to make meaningful statements about their finite-
sample behaviour
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Non-Parametric Approaches
Classification Rule

All 3 methods (direct, Parzen, kn-NN) can be used to 
obtain a posteriori probabilities for n-sample data

n

i
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),(

),(
)|(
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At each cell, total k samples; ki samples for each class

Cell size selection can be achieved by using either 
Parzen window or kn-NN approach

Using arbitrarily large number of samples, unknown 
probabilities can be obtained with optimum performance
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Non-Parametric Approaches
Nearest Neighbor Rule (1/3)

All 3 methods (direct, Parzen, kn-NN) can be used to 
obtain a posteriori probabilities by using n-sample data 
so that this density is utilized for Bayes Decision Rule

A radical approach is to use the nearest neighbor out 
of the sample data to classify the unknown test data 
(Nearest Neighbor Rule [NN-R]) 

While Bayes Rule (minimum-error rate) is optimal 
while choosing between different classes, NN-R is 
suboptimal 
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Assume that there are unlimited number of labeled 
“prototypes” for each class

If the test point x is nearest to one of these 
prototypes, x’ � p(wi|x) ≈ p(wi|x’)  for all i

Obviously, x’ labeled with m gives p(wm |x’) > p(wj|x’) for 
all j ≠ m

� one should expect p(wm |x) > p(wj|x) for all j ≠ m

For unlimited samples, the error rate for NN-R is less 
than twice the error rate of Bayes decision rule

Non-Parametric Approaches
Nearest Neighbor Rule (2/3)
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Non-Parametric Approaches
Nearest Neighbor Rule (3/3)

NN-rule allows to partition the feature space into cells 
consisting of all points closer to a given training point 
than any other training point (Voronoi tessellation)
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Non-Parametric Approaches
k-Nearest Neighbor Rule

A straight forward extension to Nearest Neighbor rule 
is using k-neighbors instead of only one.

The classification is achieved by voting k neighbors     
(k is usually selected as odd to avoid ties)

Selecting k requires a compromise : 

• If k is too high � some of these k neighbors may 
have different probabilities, for finite n

• If k is too low � estimation may not be reliable

The optimal behavior is obtained as both k and n
approaches to infinity.

k=5
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Dimension Reduction

In supervised learning, excessive dimensionality of 
features should be decreased. The main approaches are

• Principal Component Analysis

• Unsupervised

• Fisher’s Linear Discriminant

• Supervised (data with class info is required)
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Principal Component Analysis
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Assume there n vectors in d-dimensions: 

These vectors are represented by their projections 
onto a line passing, e, through their sample mean, m
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Principal Component Analysis
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Assume a coefficients are obtained; the same cost 
function, J(.), is minimized wrt to the line direction, e

Define scatter matrix, S, (similar to covariance) as 
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Principal Component Analysis

Maximum of etSemust be obtained by the constraint |e|=1

Solution is equal to e which is the eigenvector of S, corresponding 
its largest eigenvalue
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Result can be generalized to d’-dimensional projection 
by minimizing the following relation 
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Principal Component Analysis
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left from by multiply 

� instead of solving Se=λe or XXte=λe, try solving

Remember n vectors in d-dimensions: 

Note difficulty during calculation of S, if d>>n (Sis dxd)
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Fisher’s Linear Discriminant (1/8)
� The Fisher’s approach aims to project d-dimensional

data onto a line (1-D), which is defined by w

� The projected data is expected to be well separated 
between two classes after such a dimension 
reduction
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� Feature vector projections : nixwy i
t

i ,,1K
rr ==

� Measures for separation based on w : 
� Difference between projection means

� Variance of within-class projection data

� Choose projection (w) in order to maximize J

( ) scatter :            

 classfor  means projection :  where
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Fisher’s Linear Discriminant (2/8)
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� Relation between sample & projection means :

� Define scatter matrices Si
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Fisher’s Linear Discriminant (3/8)
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� This function can be written as

� Similarly, the relation between m1 and m2 becomes 

Fisher’s Linear Discriminant (4/8)
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� The initial criterion function : 
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� w vector maximizes J must satisfy wSwS WB
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� If  SW is non-singular, then 
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(see distributed notes for its proof)

(Note that SB has rank 1)
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� For a 2-class problem, d-dimensional data is projected on a line  

� As an extension to c-class problem, it is possible to project 
data onto (c-1)-dimensions, instead of a line.

� For (c-1)-dimensions : 

� Define new scatter matrices in d-dimensional space
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Fisher’s Linear Discriminant (5/8)

(Note that SB has rank c-1)



METU EE 583 Lecture Notes by A.Aydin ALATAN © 2014

� Remember the samples are projected by

� Resulting projected mean vectors in (c-1)-dimensions : 

xWy T rr =

Fisher’s Linear Discriminant (6/8)
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� Scatter matrices in (c-1)-dimensions can defined as
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� Scatter matrices in the projected space are

Fisher’s Linear Discriminant (7/8)

� Relation between scatter matrices are equal to
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Fisher’s Linear Discriminant (8/8)
� Relation between scatter matrices are obtained as
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Note that determinant is product of scatter along principal directions
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� For better discrimination in the projected space:

� Solution for J(W) : Columns of the optimal W are 
generalized (c-1) eigenvectors that correspond to the 
largest eigenvalues of


