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Abstract: Use of a-priori knowledge on the geom-
etry, the upper and the lower bounds of the tissue
resistivities in order to estimate :n vivo resistivi-
ties, in Electrical Impedance Tomography (EIT),
is assessed. For the central regions, estimation
error is higher due to decreased sensitivity at the
centerr. At the peripheral regions the sensitiv-
ity is higher, resulting in lower estimation errors.
Increasing the number of drive pairs from a sin-

le drive pair (as implemented in [1]) to 8 pairs
improves the estimation error upto 37 times for
the insulator and upto 5 times for the conductor
regions. Our results suggests that the MIMSEE
algorithm of [1] can be improved further, includ-
ing all possible drive pairs. :

INTRODUCTION

Electrical impedance measurements from a multiple elec-
trode array have been used in [1], to estimate tissue re-
sistivities, in a boundary element canine torso model,

when a-priori knowledge on the geometry and the up- -

per and the lower bounds of the tissue resistivities are
available. This study presents some follow up result of
the work described in jl . The work of [1] uses only a
single pair of current drive electrodes. Here, current is
a{)plied succesively between all of the opposite pairs of
electrodes.

METHODS

A sixteen electrode Electrical Impedance Tomography
EIT) measurement set-up is adapted in simulations.
lectrodes are equally spaced around a circular region

of conductivity distribution. For simulations of the EIT

forward problem, a custom made Finite Element (FE)
package [2] is used. Current is injected between oppo-
site (180° apart) pairs of electrodes. The work described
in [1] uses only a single pair of current drive electrodes.

In this study, current is applied successively between all

of the opposite pairs of electrodes. For each drive elec-

trode pair, the potentials were measured between adja-

cent pairs of electrodes excluding the electrodes throuih
which current is applied. The basic relation between the
regional electrical resistivities and the simulated surface
potentials is assumed linear:
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Where v is a vector with m entries representing the po-
tentials at the measurement electrodes, p is a vector with
n entries representing the resistivities of n internal re-
gions. g, is a vector with m entries reflecting lineariza-
tion errors.The linearization offset for the mean resistiv-
ity distribution, 1),, can be expressed as a vector with
m entries: 17, = V(P = Pmean) — M * Pmean. The for-
ward transformation matrix M is an (mxn) matrix and
Pmean 18 a vector with n entries, each of which represents
the mean value of each region’s resistivity. The range of
electrical resistivity of tissues is known [3{. It is assumed
that tissues may have resistivities between a minimum
and a maximum value with equal probability. Based on
this a priori knowledge of the range of the regional resis-
tivity vector p, the (n x n) variance-covariance matrix

8= ((p— (oo - (e))T) @)

is constructed. Each of the regional resistivities are as-
sumed to be not correlated, hence the matrix § is a di-
agonal matrix. Instrumentation noise of Gaussian prob-
ability distribution with zero mean and variance equal
to 0.016 is generated and superimposed to the potential
measurements. The instrumentation noise is assumed to
be uncorrelated. Therefore, variance-covariance matrix
of the instrumentation noise is

3

is a diagonal matrix. The total noise covariance terms
are assumed to arise from two sources: instrumentation
noise and linearization error. The linearization error is
assumed to be correlated noise. Details of calculating the
entries of the variance-covariance matrix, Q;, of the lin-
earization error can be found in [1]. The total noise was
assumed as the superposition of the linearization and the
instrumentation noise, so that the:variance-covariance

.
Iy = Oin,d,

- matrix of the noise is

N=Q,,+Jq- (4)

Minimizing the mean square error between the true so-
lution vector p, and its estimate p ,

(B,5) = (p - DT G(p— §)) = minimum,  (5)
and assuming a linear estirnator,
p=B:(v—1n,)+b, (6)

ves the optimum inverse B of the (m x n) matrix M.
%here, G is any arbitrary metric and
b={p)-B-M(p).
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Strand and Westwater [4] developed an expression for
the optimum inverse:

B=(5"'+MT .N"t.M)y . MT.NTL (1)

If the linearization error and the instrurpentation noise
are uncorrelated, then the matrix IV is a diagonal ma-
trix. Equation (7) requires inversion:of an (nkn) matrix
when m>n [4,5,6].

The algorithm summarized above is named as Minimum
Mean Squared Error Estimator (MiMSEE) by E] The
measured potentials are calculated using the FE model

for a range of resistivities assigned to each region. The
FE model has five regions which have resistivity different-

than the background resistivity. One of these regions is
located at the center (region Z), the other four regions
(Z1, Z2; Z3; and Z4) are centered equiangularly spaced
at 0.64 of the radius from the center of the ¢irculdr con-
ductor. Regions Z1, 22, Z3, and Z4 are located at 0, /2,
7, -and 3w /4 respectively. Resistivity of the background
region-was kept constant”at 500°Q-cm. Resistivities of
the of the other regions-are either allowed to range in be-
tween 100-Q-cm and 200 Q-cm (conductor perturbation
case) or in between 600 Q-cm and 2000 Q-cm (insulator
perturbation case). ’ :

In determining the entries of matrix M, it is assumed.

that a particular entry of matrix M is'a function of only
the resistivity of corresponding region when the resistiv-
ity of other regions are equal to their mean values and is
not influenced by the deviation of the resistivity of other

regions from their mean values. To obtain the entries of

the matrix M, a linear regression fit is utilized. -
'RESULTS AND DISCUSSION -

The fractional errors for region i;

| Xz} 7))
&= N ny2
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were calculated and given in Table 1 and Table 2 when.a
single drive pair or 2, 4; and 8 drtive pairs are activated:
In equation (8), n = 1,2,...,N represents different: resistiv-
ity distributions, p; and p; are respectively:the original
resistivity: value and the. estimated resistivity value of
region 4. s

(8)

Table 1: Percentage fractional errors in regional resistiv-
ity estimates for-insulator perturbation case .

| Drive-Pair# | Z | Z1] Z2| 73] 74
) 11956 | 541 | 6.31: 5.39 | 6.07
5 931 | 3.02 | 1.87 | 2.60 | 0.66
47931 {274} 088 ] 210 {157
81928 | 0.56-] 0.17 | 2.11 | 0.49 |

When the object is located at the center the noise is
higher due to decreased sensitivity (lower current -den-
sity) at the center. At the periphery the sensitivity

Table 2: Percentage fractional errors in regional resistiv-

ity estimates for conductor perturbation case

[ DrivePair# | Z] 21| Z2}| 73| 74 |
1]148 71007199 ]1.80 176
211497096077 176 | 0.92
4114510781 0.67 | 1.51 | 1.04
811391 0.59 |0.38|1.26|0.79

is higher, due to increased current density, resulting in
lower estimation errors. Increasing the number of drive -
pairs-improves the estimation errors. This improvement
1s not significant at the center (i.e. region Z). For the .
peripheral regions (i.e. Z1, Z2, Z3, and-Z4); improve-
ments upto 37 times in the insulator perturbation case

and upto 5 times for the conductor perturbation case -
are obtained, by-activating 8 drive pairs instead of a sin- -
gle drive pair. Estimation errors in the case of insulator
perturbations are larger than those of the conductor per-
turbations case. Differences in the estimation errors cor-
responding to symmetrical regions are due to the random

nature of the instrumentation noise. As theinstrumen-
- tation moise goes to zero, these differences disappear.

CONCLUSION

This simulation study combines the knowledge on geom-
etry, the upper and the lower bounds of tissue resistivity
values; and the statistical information on the instrumen-
tation noise with EIT measurements in order to enhance

~the quantitative accuracy in determining tissue resistiv-

ities.. The results of this study demonstrates that the
MiMSEE algorithm developed in {1} can be further im-

proved by including all possible drive electrode pairs.
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